The Hartree-Fock-Roothaan Method


This rather daunting expression can be multiplied out, to give four terms:

\[  \begin{array}{llll} 
\iint \chi_i(\mbox{x}_1)\chi_j(\mbox{x}_2) {\displaystyle \frac {1}{r_{12}}} 
\chi_i(\mbox{x}_1)\chi_j(\mbox{x}_2) d\mbox{x}_1d\mbox{x}_2 \\ 
-\iint \chi_i(\mbox{x}_1)\chi_j(\mbox{x}_2) {\displaystyle \frac {1}{r_{12}}} 
\chi_i(\mbox{x}_2)\chi_j(\mbox{x}_1) d\mbox{x}_1d\mbox{x}_2 \\ 
-\iint \chi_i(\mbox{x}_2)\chi_j(\mbox{x}_1) {\displaystyle \frac {1}{r_{12}}} 
\chi_i(\mbox{x}_1)\chi_j(\mbox{x}_2) d\mbox{x}_1d\mbox{x}_2 \\ 
\iint \chi_i(\mbox{x}_2)\chi_j(\mbox{x}_1) {\displaystyle \frac {1}{r_{12}}} 
\chi_i(\mbox{x}_2)\chi_j(\mbox{x}_1) d\mbox{x}_1d\mbox{x}_2 
\end{array} 
 \]


Click here to return to the list of online lectures

Click here to return to the previous Section

Click here to go on to the next Section


This page created by Jeremy Harvey, Bristol, 2000.