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Abstract
We derive a non-local effective interfacial Hamiltonian model for short-ranged
wetting phenomena using a Green’s function method. The Hamiltonian is
characterized by a binding potential functional and is accurate to exponentially
small order in the radii of curvature of the interface and the bounding wall.
The functional has an elegant diagrammatic representation in terms of planar
graphs which represent different classes of tube-like fluctuations connecting the
interface and wall. For the particular cases of planar, spherical and cylindrical
interfacial (and wall) configurations, the binding potential functional can be
evaluated exactly. More generally, the non-local functional naturally explains
the origin of the effective position-dependent stiffness coefficient in the small-
gradient limit.

1. Introduction

In a recent letter [1], it was argued that many of the long-standing problems in the fluctuation
theory of three-dimensional short-ranged wetting [2], including the order of the critical wetting
transition and the size of the asymptotic critical regime [3–8], may be overcome using a non-
local effective interfacial Hamiltonian. This model may also be used to study adsorption
at non-planar walls, and similarly resolves known difficulties associated with local effective
Hamiltonian treatments [9, 10].

In the present series of articles, we give full details of how such a non-local interfacial
Hamiltonian for wetting may be explicitly derived from an underlying Landau–Ginzburg-
Wilson (LGW) model using a Green’s function method. The techniques employed are closely
related to multiple-reflection expansion methods used for other problems [11, 12], including
Kac’s famous question concerning the eigenvalue spectra of differently shaped drums [13].
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The derivation given here is essentially an improved version of the recipe introduced by Fisher
and Jin (FJ) [6] with the advantage that it identifies the interfacial Hamiltonian to exponentially
(as opposed to algebraically) accurate order in the relevant radii of curvature, and reveals the
non-local nature of the interfacial Hamiltonian. Our central result is that the Hamiltonian is
characterized by a binding potential functional which can be written as an elegant diagrammatic
expansion

W = a1 + b1 + · · · (1)

in terms of planar graphs, which represent different classes of tube-like fluctuations connecting
the unbinding interface and the wall (see below).

Our presentation is split into two papers: in this first article, we consider the derivation of
the interfacial model from an LGW theory which has fixed order parameter (magnetization)
at the bounding wall, rather than coupling to a surface field and enhancement, and also
within the so-called double-parabola (DP) approximation to the potential modelling of the bulk
coexistence [6, 14]. Both of these choices make the derivation of the model most transparent
without influencing the underlying physics. The DP approximation also has the advantage
that one can identify all the contributions to the binding potential functional and classify all
the higher-order diagrams. In paper II, we extend the Green’s function method to allow for
perturbations about the DP approximation, the inclusion of squared Laplacian terms in the
Hamiltonian, and also the case of coupling to a surface field and enhancement.

Our paper is arranged as follows. In the next section, we present some necessary
background material, in particular the FJ perturbative derivation of a local interfacial
Hamiltonian with a position-dependent binding potential function and stiffness coefficient.
Following this, we present an alternative (non-perturbative) derivation using Green’s functions,
identifying the non-local form of the Hamiltonian and binding potential functional. The
diagrammatic interpretation of this functional is discussed in some detail. We show how,
for planar, spherical and cylindrical interfacial (and wall) configurations, the diagrams can
be evaluated and resummed to recover the known form of the binding potential function in
these geometries. Finally, we demonstrate that, in the small-gradient limit, the non-local model
reduces to the FJ Hamiltonian, and, in particular, how an effective position-dependent stiffness
emerges from the underlying non-locality. A connection with exact statistical mechanical sum-
rules is also made.

2. Background theory: the Fisher–Jin derivation

The derivation of the non-local model begins by following the scheme set out by FJ, who
were first to systematically consider the process of integrating out degrees of freedom from a
microscopic model. For the latter, FJ use the continuum LGW Hamiltonian

HLGW[m] =
∫

dr
{

1
2 (∇m)2 +�φ(m)

}
(2)

based on a magnetization-like order parameter m(r). A potential φ(m) models the bulk
coexistence of phases α and β with order parameters −m0 and +m0, respectively (which, for
simplicity, we assume exhibit Ising symmetry). The shifted potential�φ(m) = φ(m)−φ(m0)

conveniently substracts the bulk contribution to the free energy (proportional to the volume).
For wetting phenomena, it is believed that a DP approximation suffices to capture the critical
singularities, and to this end we write (in zero bulk field)

�φ(m) = κ2

2
(|m| − m0)

2 (3)
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Figure 1. Schematic diagram of an interfacial configuration �(x) of an adsorbed layer of phase β
on a substrate ψ(x). Their respective normal vectors n� and nψ are also shown.

(This figure is in colour only in the electronic version)

where κ is the inverse bulk correlation length. We shall only consider the form of the interfacial
model at bulk coexistence although, within the DP approximation, it is a straightforward
exercise to extend the calculation to non-zero field.

We suppose that the system is bounded by a wall described by a height functionψ = ψ(x)
which is often conveniently measured above some plane with parallel displacement x = (x, y)
(see figure 1). The most commonly studied example is the planar wall, for which ψ = 0,
although other pertinent examples are spheres, cylinders, and wedges. We suppose that the
magnetization on the boundary is fixed:

m(r) = m1, for r = (x, ψ(x)). (4)

Without loss of generality, we assume that m1 > 0, so the wetting layer forms at the wall-α
interface, for which the bulk magnetization is −m0. This choice of fixed boundary condition
is easiest to implement using the method discussed here and allows the non-local nature of
the interfacial model to be derived most cleanly. We emphasize that this does not influence
the physics of the critical and complete wetting transitions. Varying m1 at fixed temperature
T induces a (critical) wetting transition in exactly the same way that varying the surface field
does in the LGW model with a surface potential. The mean-field (MF) critical wetting phase
boundary, as defined for the planar wall-α interface, is readily shown to be m1 = m0 (see
below). At the MF level (and beyond, in three dimensions), m0 − m1 is the relevant scaling
field controlling the continuous divergence of the equilibrium wetting film thickness, together
with parallel and perpendicular correlation lengths and the associated vanishing of the contact
angle. How this MF critical wetting scenario is changed by interfacial fluctuation effects has
been the topic of much debate in the literature [2–8] and is an essential application of the non-
local model.

FJ introduced a number of definitions of the collective co-ordinate defining the interfacial
configuration. The most convenient one to use, and the one adopted in the present paper, is
a crossing criterion in which one identifies the interface as the surface of iso-magnetization
at which the order parameter is constrained to be zero. Thus we consider constrained
magnetization profiles for which

m(r) = 0 for r = (x, �(x)), (5)

where �(x) is the interfacial height (see figure 1).



6436 A O Parry et al

The interfacial Hamiltonian is formally defined via a partial trace over Boltzmann weighted
configurations which respect the crossing criterion. A saddle point evaluation of the constrained
sum leads to the FJ identification

H [�,ψ] = HLGW[m�(r)] − Fwβ[ψ] (6)

where we have subtracted a surface term corresponding to the excess free energy of the wall-β
interface Fwβ[ψ], which is explicitly determined in our calculation. In the above identification,
m� is the constrained profile that minimizes the LGW model subject to the crossing criterion
and boundary condition. Within the DP approximation, this satisfies the Helmholtz equations

∇2m� =
{
κ2 (m� − m0), m� > 0
κ2 (m� + m0), m� < 0

(7)

with appropriate boundary conditions in the bulk and at the interface and the wall.
Before we present our derivation of a non-local interfacial model, it is worthwhile recalling

some features of the original FJ derivation for planar substrates (ψ = 0). The FJ derivation
is a perturbative one based on the properties of the planar constrained profile mπ(z; �). This
satisfies the second-order ODEs

∂ 2mπ

∂z2
=

{
κ2 (mπ − m0), mπ > 0
κ2 (mπ + m0), mπ < 0

(8)

together with the boundary conditions mπ (0; �) = m1, mπ(�; �) = 0 and mπ (∞; �) = −m0.
The planar constrained profile determines the binding potential Wπ (�), defined as the excess
free energy per unit area of a constrained wetting layer with uniform (constrained) film
thickness �. Within the DP approximation, mπ (z; �) is trivially determined. For z � �, this is
particularly simple,

mπ (z; �) = −m0(1 − e−κ (z−�)) (9)

whilst within the region of interest (0 � z � �)

δmπ (z; �) = δm1 + m0e−κ�

1 − e−2κ�
e−κz − m0 + δm1e−κ�

1 − e−2κ�
e−κ(�−z) (10)

where we have written δmπ (z, �) = mπ (z, �)− m0, and δm1 = m1 − m0. The two exponential
terms e−κ(�−z) and e−κz represent the tails of the (planar) α−β and wall−β interfacial profiles
with coefficients chosen to match the boundary conditions. For later purposes, it is useful to
expand these coefficients and write

δmπ (z; �) = e−κz
(
δm1 + m0e−κ� + δm1e−2κ� + · · ·)

− e−κ(�−z)(m0 + δm1e−κ� + m0e−2κ� + · · ·). (11)

By setting z = 0 or z = l, one can see the term-by-term cancellations in the two series required
to satisfy the crossing criterion and fixed surface magnetisation. The physical significance of
the terms in this expansion will become apparent later. As noted above, the planar constrained
profile determines the binding potential

Wπ (�) =
∫

dz

{
1

2

(
∂mπ

∂z

)2

+�φ(m)

}
−�wβ −�αβ (12)

where �αβ and �wβ are the tensions of the separate αβ and wall-β interfaces. Within the DP
approximation, �αβ = κm2

0,�wβ = κδm2
1/2, and the binding potential is given by

Wπ (�) = 2κδm1m0
e−κ�

1 − e−2κ�
+ (κm2

0 + κδm2
1)

e−2κ�

1 − e−2κ�
(13)
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which is usually expanded, keeping only the two leading order terms:

Wπ (�) = 2κδm1m0e−κ� + (κm2
0 + κδm2

1)e
−2κ� + · · · . (14)

Minimization of Wπ (�) determines the equilibrium MF film thickness κ�MF =
ln(−m0/δm1) for m1 < m0 and shows the standard logarithmic singularity for short-ranged
critical wetting as δm1 → 0− [2]. Thus, as remarked above, the MF critical wetting phase
boundary for the fixed wall magnetization problem is m1 = m0, corresponding to the vanishing
of the first term of the binding potential.

When the interface is no longer planar, FJ determine m� perturbatively by expanding about
the planar profile. The original derivation was later simplified by Fisher, Jin and Parry (FJP) [7]
who noted that, provided that ∇2�/κ and (∇�)2 � 1, the ansatz

m�(r) = mπ(z; �(x)) r = (x, z) (15)

is an approximate solution to the full Helmholtz equation and exactly satisfies the required
boundary conditions. This determines the effective Hamiltonian as

HFJ [�] =
∫

dx
{
�αβ + �(�)

2
(∇�)2 + Wπ (�)

}
(16)

up to terms of order (∇2�) and (∇�)4. Here�(�) is the position-dependent stiffness coefficient,
formally identified as [6]

�(�) =
∫ ∞

0
dz

(
∂mπ(z; �)

∂�

)2

, (17)

and which is given explicitly in DP approximation by

�(�) = �αβ + 2κ δm1 m0e−κ� − 2κ2�m2
0 e−2κ� + · · · (18)

where �αβ is the stiffness of the free interface (equal to the tension for the present continuum
isotropic model).

It is clear that the key ingredient in the derivation of the interfacial Hamiltonian is the
identification of the constrained profile δm� = m�−m0 within the wetting region (m > 0). In
general, this is a functional of the interfacial configuration (and the wall shape). In anticipation
of the non-perturbative derivation presented in the next section, we combine (11) and (15) and
note that the FJP ansatz for the magnetization in the wetting layer can be written as two infinite
series

δm� =
∞∑

n=0

(
µn e−κz−nκ�(x) − µn+1 eκz−(n+1)κ�(x)) (19)

with coefficients

µn =
{
δm1 n even (or 0)

m0 n odd.
(20)

As stated above, this exactly satisfies the boundary conditions and is an approximate
solution to the Helmholtz equation, provided that ∇2�/κ and (∇�) 2 � 1. Corrections to
this expression are of algebraic order in the inverse radii of curvature of the interface.

3. Non-perturbative derivation

3.1. Constrained magnetization with fixed boundary conditions

To recap, first we require solutions to the Helmholtz equations

∇2m� =
{
κ2 (m� − m0), m� > 0
κ2 (m� + m0), m� < 0.

(21)
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The boundary conditions in the bulk region (m� < 0) are

m�|r=(x,�(x)+) = 0, m�|z=∞ = −m0 (22)

whilst, within the wetting layer (m� > 0), we must have

m�|r=(x,ψ(x)) = m1, m�|r=(x,�(x)−) = 0. (23)

We deal with the simpler bulk region (m� < 0) first. Consider the Green’s function that
solves the Ornstein–Zernike-like equation(−∇2

r1
+ κ2

)
K (r1, r2) = 2κ δ(r1 − r2) (24)

and which decays to zero for |r1 − r2| → ∞. This has the well-known Yukawa decay

K (r1, r2) = κ

2π |r1 − r2|e−κ |r1−r2| (25)

and is essentially the Ornstein–Zernike expression for the three-dimensional bulk correlation
function. This is not a coincidence and has a direct physical interpretation which we will
return to later. Next, in terms of the two-point function, consider the improved ansatz for the
constrained profile

m�(r) = −m0 + m0

∫
ds� K (r�, r) (26)

where r� = (x, �(x)) is a point on the interface and ds� = √
1 + (∇�)2 dx is the corresponding

local area element. At this point we make four remarks:
(A) The ansatz is an exact solution to the Helmholtz partial differential equation (PDE),

equation (21), which satisfies the bulk boundary condition, but does not perfectly satisfy the
crossing-criterion for all interfacial shapes. However, the error for the latter is exponentially
small in the radius of curvature and is therefore irrelevant (see remark C). This contrasts with
the FJP ansatz, which exactly satisfies the boundary conditions but is only an approximate
solution to the Helmholtz PDE.

(B) For a planar interfacial configuration, the ansatz identically recovers the expression (9)
for the planar constrained profile mπ(z, �) in the bulk region z � �.

(C) The ansatz satisfies the crossing criterion to exponentially accurate order in the radius
of curvature. This is most easily checked for a spherical interfacial configuration of radii ρ
which is centred at the origin (say). The details of the wall shape beneath are not a concern,
since the constrained profile in the bulk region is independent of this. The exact solution to the
Helmholtz problem in this region is the radially symmetric function

mEXACT
� (r) = −m0 + m0

ρ

r
e−κ(r−ρ) (27)

which clearly satisfies the crossing criterion. This compares with the ansatz (26) which, for a
spherical configuration, reduces to

m�(r) = −m0 + m0
ρ

r
e−κ(r−ρ) (1 − e−2κρ

)
. (28)

Whilst not quite exact, the error is completely negligible, since it is exponentially (as opposed
to algebraically) small in the radius of the fluid sphere. The same is also true if one considers
a constrained cylindrical interfacial shape. Thus, the ansatz will identify correctly any relevant
curvature corrections to the effective Hamiltonian.

(D) The integral appearing in the ansatz for the constrained profile has an elegant
diagrammatic representation which we have found useful for manipulations and which has an
appealing physical interpretation. The two wavy lines represent the wall (lower line) and the αβ
(upper line) interfacial configurations. The thick straight line represents the two-point function
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(Kernel) K (r1, r2), whilst the two circles represent the points r2 = r (open) and r1 = rl

(black). A black circle (on a surface) means that one must integrate over all positions on that
surface with the appropriate infinitesimal area element. Thus, we can rewrite the ansatz (26)
via the diagram

m�(r) = −m0 + m0 . (29)

We now turn attention to the constrained profile within the wetting layer. This will
determine the form of the binding potential functional. In light of the above Green’s function
representation of the profile in the bulk region, consider the infinite series

δm� =
∞∑

n=0

(
µn I (n)wβ (r)− µn+1 I (n)αβ (r)

)
(30)

where I (n)wβ (r) and I (n)αβ (r) represent contributions to the profile arising from the ‘tails’ of
the wall-β and αβ interface, respectively. These are functionals of the interfacial and wall
configurations and are more accurate versions of the terms appearing in the FJP expansion (19).
They are defined via multi-dimensional integrals over the Green’s function K and have the
same diagrammatic representation described above. Thus, for the tails of the wall-β interface,
we have, for the first three terms,

I (1)wβ (r) =
∫

dsψ K (rψ, r) (31)

I (2)wβ (r) =
∫ ∫

ds� dsψ K (r�, rψ)K (rψ, r) (32)

I (3)wβ (r) =
∫ ∫ ∫

dsψ ds� ds′
ψK (rψ, r�)K (r�, r′

ψ)K (r
′
ψ, r) (33)

or, equivalently,

I (1)wβ (r) = (34)

I (2)wβ (r) = (35)

I (3)wβ (r) = (36)

whilst, for the αβ interface,

I (1)αβ (r) =
∫

ds� K (r�, r) (37)

I (2)αβ (r) =
∫ ∫

dsψ ds� K (rψ, r�)K (r�, r) (38)

I (3)αβ (r) =
∫ ∫ ∫

ds� dsψ ds′
� K (r�, rψ)K (rψ, r′

�)K (r
′
�, r) (39)

or,

I (1)αβ (r) = (40)
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I (2)αβ (r) = (41)

I (3)αβ (r) = . (42)

Notice that the value of each corresponding coefficient µn in the expansion (30) is simply
determined by the location of the extreme black circle (furthest removed from the open circle).
The coefficient is δm1 or m0 if it sits on the wall or interface, respectively. Diagrammatically,
our ansatz (30) for the constrained profile within the wetting layer is

δm� = δm1 + m0 + δm1 + · · ·

−
(

m0 + δm1 + m0 + · · ·
)
. (43)

The expansion is an exact solution to the Helmholtz PDE and identically reduces to the
planar constrained profile (10) and (11) if we set �(x) = � and ψ = 0. It also satisfies the
crossing criterion and wall boundary condition to exponential accuracy in the radii of curvature.
Again, this is most easily seen by considering spherical interfacial and wall configurations.
We suppose that the wall is a sphere of radius R and the wetting layer is a sphere of radius
ρ = R + �. Now let the coordinate tend to the wall, r → rψ , and group the terms in the series
according to the same coefficient and the same number of Ks that span the two interfaces:

δm�(rψ) = δm1 I (1)wβ (rψ)+ m0

(
I (2)wβ (rψ)− I (1)αβ (rψ)

)
+ δm1

(
I (3)wβ (rψ)− I (2)αβ (rψ)

)
+ · · · .

(44)

Making use of the radial symmetry, the integrals are easily evaluated,

I (1)wβ (rψ) = = 1 − e−2κR (45)

I (2)wβ (rψ)− I (1)αβ (rψ) = − ∝ e−2κR (46)

I (3)wβ (rψ)− I (2)αβ (rψ) = − ∝ e−2κR (47)

implying that all bar the very first contribution vanishes. In these diagrams, the concentric
circles represent the spherical wall and interfacial shapes in an obvious representation, while
the open circle represent the fixed point rψ , which is not integrated over. The first integral
is unity (to exponential accuracy in the radius of the wall), giving the correct value of the
boundary magnetization. A similar argument holds at the interface. Setting r = r� and doing
the analogous grouping of terms,

δm�(r�) = −m0 I (1)αβ (r�)− δm1

(
I (2)αβ (r�)− I (1)wβ (r�)

)
− m0

(
I (3)αβ (r�)− I (2)wβ (r�)

)
+ · · · (48)
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with

I (1)αβ (r�) = = 1 − e−2κ(R+�) (49)

I (2)αβ (r�)− I (1)wβ (r�) = − ∝ e−2κ(R+�) (50)

I (3)αβ (r�)− I (2)wβ (r�) = − ∝ e−2κ(R+�). (51)

Again, to exponential accuracy, the first integral is equal to unity, while all the other
contributions vanish.

3.2. Non-local binding potential functional with fixed boundary conditions

Having constructed the constrained profile, the final piece of the derivation is to evaluate
HLGW[m�]. First, we use the divergence theorem to re-express the contribution from the
gradient-squared term. Within the present DP approximation, terms arising from integrals over
the volume conveniently cancel, so that

HLGW[m�] = −δm1

2

∫
ψ

dsψ ∇m · nψ − m0

2

∫
�−

ds� ∇m · n� − m0

2

∫
�+

ds�∇m · n� (52)

containing only surface terms. Here, nψ and nl are the (local) unit normals at the wall and the
interface, respectively, pointing towards the bulk (see figure 1). The utility of this expression
does not seem to have been recognised previously. For example, for planar interfacial and
wall configurations, this provides a far simpler route to the evaluation of the binding potential.
Hence, within DP approximation, we can identify

Wπ (�) = −δm1

2

∂mπ

∂z
(0, �)− m0

2

(
∂mπ

∂z
(�−, �)+ ∂mπ

∂z
(�+, �)

)
+�wβ +�αβ (53)

which, from (10), recovers the result (13), quoted earlier. For general wall and interfacial
configurations, we need to perform three surface integrals. The evaluation of each of these is
very similar. Consider the surface integral over the wall

−δm1

2

∫
ψ

dsψ∇m · nψ . (54)

Substituting the series expansion for the constrained profile δm�, equation (30), and grouping
the terms together according to coefficients and Kernels, we have

−δm
2
1

2

∫
ψ

dsψ ∇ I (1)wβ (rψ) · nψ − m0 δm1

2

∫
ψ

dsψ ∇
(

I (2)wβ (rψ)− I (1)αβ (rψ)
)

· nψ

− δm2
1

2

∫
ψ

dsψ ∇
(

I (3)wβ (rψ)− I (2)αβ (rψ)
)

· nψ + · · · (55)

or, diagrammatically,

−δm
2
1

2

∫
ψ

dsψ ∇
( )

· nψ − m0 δm1

2

∫
ψ

dsψ ∇
(

−
)

· nψ

− δm2
1

2

∫
ψ

dsψ ∇
(

−
)

· nψ + · · · (56)
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where each gradient is evaluated at the wall, i.e. the open circle is placed at the lower wavy
line. Ignoring irrelevant terms of order exp(−κ(Rψ1 (x)+ Rψ2 (x)

)
), where Rψ1,2 are the principal

radii of curvature at the wall, it follows that the scalar field appearing in each gradient term of
the expansion is a constant along the surface of the wall, i.e.

= 1 (57)

− = 0 (58)

− = 0 . (59)

Accordingly, (56) reduces to

δm2
1

2

∫
ψ

dsψ

∣∣∣∣∇
( )∣∣∣∣ + m0 δm1

2

∫
ψ

dsψ

∣∣∣∣∇
(

−
)∣∣∣∣

+ δm2
1

2

∫
ψ

dsψ

∣∣∣∣∇
(

−
)∣∣∣∣ + · · · . (60)

The first term does not describe the wetting behaviour but rather the excess free energy of
the wall-β interface,

Fwβ[ψ] = �wβ

∫
dsψ + C

∫
dsψ

(
1

Rψ1
+ 1

Rψ2

)
(61)

where C = δm2
1 is a rigidity modulus. Note that the last term in (61) involves the local mean

curvature. No higher-order corrections, containing for example the Gaussian curvature, exist
within the present DP approximation. The other terms in the series (60) contribute towards the
binding potential functional. For example,

m0 δm1

2

∫
ψ

dsψ

∣∣∣∣∇
(

−
)∣∣∣∣ = κ m0 δm1

∫
ψ

dsψ (62)

and

δm2
1

2

∫
ψ

dsψ

∣∣∣∣∇
(

−
)∣∣∣∣ = κ δm2

1

∫
ψ

dsψ . (63)

Similar expressions are generated by the surface integrals along the interface. For example,
along the bulk side of the interface, where the constrained profile is given by (26) (or
equivalently (29)), we find

−m0

2

∫
�+

ds� ∇m� · n� = m2
0

2

∫
�+

ds�

∣∣∣∣∣∇
( )∣∣∣∣∣

= �αβ

2

∫
�

ds� + m2
0

∫
�

ds�

(
1

R�1
+ 1

R�2

)
(64)
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where the gradient is evaluated on the upper side of the αβ interface, i.e. the open circle is
placed on the upper wavy line. This expression generates half of the interfacial tension of the
αβ interface and an apparent bending modulus which will later cancel. Here, R�1,2 are the local
radii of curvature of the interface. The final surface integral is along the bottom of the αβ
interface and, using the analogous grouping of terms, we find

−m0

2

∫
�−

ds�∇m� · n� = −m2
0

2

∫
�−

ds�∇
( )

· n�

− m0 δm1

2

∫
�−

ds� ∇
(

−
)

· n�

− m2
0

2

∫
�−

ds� ∇
(

−
)

· n� + · · · . (65)

The first term is evaluated as

−m2
0

2

∫
�−

ds� ∇
( )

· n� = �αβ

2

∫
�

ds� − m2
0

∫
�

ds�

(
1

R�1
+ 1

R�2

)
(66)

generating the other half of the interfacial tension and cancelling the bending modulus term in
(64). The second term in the expansion simplifies

−m0 δm1

2

∫
�−

ds� ∇
(

−
)

· n� = κm0 δm1

∫
�

ds� (67)

and is the same as (62). Similarly, the third term reduces to

−m2
0

2

∫
�−

ds� ∇
(

−
)

· n� = κm2
0

∫
�

ds� (68)

from which the pattern is apparent. Combining all of the above, the constrained free energy of
the wall-α interface can be written as

HLGW[m�] = Fwβ[ψ] + H [�,ψ] (69)

where our final result for the interfacial Hamiltonian is

H [�,ψ] = �αβ Aαβ + W [�,ψ] (70)

where Aαβ = ∫
�

ds� is the area of the interface. The binding potential functional is exactly
given by

W [�,ψ] =
∞∑

n=1

(a1�
n
n + b1�

n+1
n + b2�

n
n+1) (71)

with geometry-independent coefficients

a1 ≡ 2κ m0 δm1 = √
8�wβ�αβ

b1 ≡ κ m2
0 = �αβ

b2 ≡ κ δm2
1 = 2�wβ.

(72)

Equation (71) is the main result of our paper, and expresses the binding potential functional
as a sum of terms �νµ[�,ψ], which are each multiple integrals over the Green’s function
K connecting µ points on the wall with ν points on the interface. They have the same
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diagrammatic representation described earlier but contain no open circles. Thus the three
leading-order terms, corresponding to n = 1 in the series, are

�1
1[�,ψ] =

∫ ∫
dsψ ds� K (rψ, r�) = (73)

�2
1[�,ψ] =

∫ ∫ ∫
ds� dsψ ds′

� K (r�, rψ)K (rψ, r′
�)

=
∫

dsψ

[∫
ds� K (rψ, r�)

]2

= (74)

�1
2[�,ψ] =

∫ ∫ ∫
dsψ ds� ds′

ψ K (rψ, r�)K (r�, r′
ψ)

=
∫

ds�

[∫
dsψ K (r�, rψ)

]2

= . (75)

These diagrams were identified and discussed in [1], and are responsible for the leading-order
terms in the binding potential (14) (see below). The present derivation also identifies higher-
order terms in the expansion of the binding potential functional. For example, the three n = 2
terms are represented diagrammatically by

�2
2[�,ψ] = (76)

�3
2[�,ψ] = (77)

�2
3[�,ψ] = (78)

and similarly for larger values of n. Note that all the diagrams correspond to planar graphs and
have a simple ‘lace’ or ‘zig-zag’ form in which the black circles are sequentially connected by
a single thick line, each representing a Green’s function K . As we shall see, these higher-order
diagrams (n > 1) are responsible for the hard-wall repulsion in the binding potential functional
(and function).

4. Binding potential functions and position-dependent stiffnesses

Having derived the explicit form of the non-local model, we show that it reproduces the
known form of the binding potential for planar and spherical interfacial configurations and,
in addition, recovers the FJ Hamiltonian with its position-dependent stiffness coefficient in the
small-gradient limit.

4.1. Planar interfaces

Consider the simplest case of a planar wall and a planar interface of constant thickness: ψ = 0,
�(x) = �. Let Aw denote the area of the wall (and interface). When evaluated at �(x) = �, the
binding potential functional per unit area necessarily reduces to the planar binding potential

Wπ = W [�, 0]
Aw

∣∣∣∣
�(x)=�

. (79)
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The contributions to the functional are easily evaluated. At leading order n = 1,

�1
1 = = Aw e−κ� (80)

�2
1 = = Aw e−2κ� (81)

�1
2 = = Aw e−2κ� (82)

implying

Wπ (�) = a1e−κ� + (b1 + b2)e
−2κ� + · · · (83)

which recovers the traditional form of the binding potential function in theories of critical
wetting, equation (14).

The higher-order terms in the functional can also be easily evaluated:

�n
n = Aw e−(2n−1)κ�

�n+1
n = Awe−2nκ�

�n
n+1 = Awe−2nκ�.

(84)

Note that, within the binding potential functional (71), each of the�n
n enters with the same

coefficient, which is also the case for �n+1
n and �n

n+1. A trivial resummation then leads to

Wπ = a1
e−κ�

1 − e−2κ�
+ (b1 + b2)

e−2κ�

1 − e−2κ�
(85)

which is identical to the known result quoted earlier, equation (13).
The hard-wall divergence of this function as � → 0 is, therefore, directly related to the

higher-order diagrams in the binding potential functional.

4.2. Spherical interfaces

A similar calculation can be performed for the problem of wetting around a sphere (and
cylinder) with interesting consequences. We suppose that the sphere is of radius R and
consider an interfacial configuration corresponding to a sphere of radius R + �. This class of
configurations is sufficient to recover the MF result for the interfacial thickness — a problem
which continues to attract attention [15, 16].

The three leading-order terms appearing in the binding potential functional are now given
by

�1
1 = = √

AwAαβe−κ�

�1
2 = = Aw e−2κ�

�2
1 = = Aαβe−2κ�

(86)
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where Aαβ = 4π(�+ R)2 is the surface area of the interface. More generally, the higher-order
diagrams are given by

�n
n = √

AwAαβ e−(2n−1)κ�

�n+1
n = Aαβ e−2nκ�

�n
n+1 = Aw e−2nκ�.

(87)

In writing these, we have ignored terms of order e−2κR , which are certainly negligible
for spheres of mesoscopic size, pertinent to studies of wetting. This point is perhaps worth
emphasizing. The equilibrium thickness of a wetting layer around a sphere at and above the
wetting temperature is of order (1/κ) ln R, which is a result valid both at MF level and beyond.
Ignoring terms or order e−2κR is therefore equivalent to neglecting terms of order exp(−eκ�) in
the free energy. Returning to our proof, the different terms in the functional can be resummed
and, combining (61), (69) and (71), the constrained excess free energy of this wall-β interface
reduces to

Fwα[�] = Fwβ + �αβ Aαβ + Aw Ws(�) (88)

where

Fwβ
Aw

= κ δm2
1

2

(
1 + 1

κR

)
(89)

and the spherical binding potential

Aw Ws(�) = a1

√
Aαβ Aw

e−κ�

1 − e−2κ�
+ (

b1 Aαβ + b2 Aw
) e−2κ�

1 − e−2κ�
. (90)

The last two expressions are the known results as calculated directly from the Landau
theory within the DP approximation (for fixed boundary magnetization) [16]. Note that each
exponential contribution contains polynomial corrections due to the thickness dependence of
the interfacial area Aαβ . The binding potential function for spheres is therefore different to the
planar interfacial binding potential—a result that has not always been recognized. Indeed, the
manner in which the area of the unbinding interface enters the form of the binding potential
may be viewed as a subtle signature of non-local effects at short-ranged wetting. The influence
of non-locality on the equilibrium film thickness and the total mass adsorption may well be
observable in density functional studies.

4.3. Origin of the position-dependent stiffness coefficient

Within the non-local model there is no explicit position dependence to the surface tension.
Despite this, the non-local model identically recovers the FJ Hamiltonian in the small gradient
limit and generates an effective position-dependent stiffness from the non-local nature of the
binding potential functional. This naturally explains why the coefficients appearing in the FJ
stiffness are the same as those appearing in the binding potential function. To this end, we
focus on a planar wall (ψ = 0) and analyse the structure of the dominant (n = 1) terms in the
binding potential functional when ∇� is small. Thus, we write

W [�, 0] = a1 �
1
1 + b1 �

2
1 + b2 �

1
2 + · · · (91)

where a1, b1 and b2 are given by (72). Diagrammatically, this is

W [�, 0] = a1 + b1 + b2 + · · · . (92)
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The results are best expressed in terms of the transverse Fourier transform of the Green’s
function K which, recall, is simply proportional to the bulk correlation function. We define

K (�; Q) =
∫

dx
κ e−κ√x2+�2

2π
√

x2 + �2
eix·Q (93)

which can be evaluated explicitly:

K (�; Q) = κ√
κ2 + Q2

e−
√
κ2+Q2 �. (94)

It is also convenient to introduce the moment expansion

K (�; Q) = K0(�)+ Q2 K2(�)+ · · · (95)

so that we can identify the zeroth and second moments

K0(�) = e−κ� (96)

and

K2(�) = −(1 + κ �)
e−κ�

2 κ2
(97)

respectively. These moments of the bulk correlation function will determine the position
dependence of the planar binding potential and stiffness.

As discussed above, when the interface is perfectly flat, the integrals determining �1
1, �2

1
and �1

2 are particularly simple, and we may write

Wπ (�) = a1 K0(�)+ (b1 + b2) K0(�)
2 + · · · (98)

which is the same as (83), quoted above.
Next, suppose that the interface is non-planar. Holding the point on the interface fixed, and

doing the integral over the wall first, both �1
1 and �1

2 generate effectively local interactions

=
∫

dx
√

1 + ∇�(x)2 e−κ�(x) (99)

=
∫

dx
√

1 + ∇�(x)2e−2 κ�(x). (100)

These clearly generate an effective position dependence to the stiffness coefficient. Indeed,
equation (99) is responsible for the leading-order exponential term in the FJ expression (18).
The contribution to the effective position-dependent stiffness from�1

2 is not important, since it
is only O(e−2κ�).

The negative decaying term ∝�e−2κ� in the FJ result (18) arises from the �2
1 contribution

=
∫

dx1

{∫
dx2

√
1 + ∇�(x2)2 K (r12)

}2

(101)

which remains non-local. Formally, however, if we assume that the gradient ∇� is small, one
may Taylor expand the value of �(x2) about each point x1 and obtain

≈
∫

dx e−2 κ�(x) +
∫

dx S(�(x)) (∇�)2 + · · · (102)

where

S(�) = K0(�)
2 + 2 K ′

0(�)K
′
2(�) (103)
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yielding

S(�) = −κ �e−2κ� + · · · . (104)

The first term in the expansion (102) generates the second-order contribution b1e−2κ� in
the planar binding potential. The second integral generates another contribution to the effective
position-dependent stiffness. The presence of the second moment of the bulk correlation
function is significant, since it is not a pure exponential and is negative. Gathering together
the above, we find, to square-gradient order,

H [�, 0] ≈
∫

dx
{
�αβ + �(�)

2
(∇�)2 + Wπ (�)

}
(105)

with binding potential Wπ (�) given by (83), and the effective position-dependent stiffness
coefficient

�(�) = �αβ + a1e−κ� − 2 b1κ �e
−2κ� + · · · (106)

where the dots represent sub-dominant terms of order e−2κ�, which can be ignored. This is the
same as the FJ Hamiltonian, and identifies a hitherto unseen connection between the coefficients
appearing in the binding potential and position-dependent stiffness.

Finally, we note that, when both the interface and wall are non-planar, all the contributions
�ν
µ[�,ψ] to the binding potential functional are non-local. In the small-gradient limit, |∇�|,

|∇ψ| � 1, one may expand �1
1 and �1

2, and derive the approximate local limit

H [�,ψ] = (�αβ +�wβ)

∫
dx +�H [�,ψ] (107)

where the interaction part of the Hamiltonian is

�H [�,ψ] =
∫

dx
{
�(�− ψ)

2

(∇�)2 +�12(�− ψ)
(∇� · ∇ψ)

+ �wβ(�− ψ)

2

(∇ψ)2 + Wπ (�− ψ)

}
. (108)

This introduces two more effective position-dependent stiffness coefficients, which depend on
the local relative displacement of the interface and wall. The coefficient of (∇ψ)2/2 is the
position-dependent stiffness of the wall-β interface and is given by

�wβ(�) = �wβ + a1e−κ� − 2 b2 κ �e
−2κ� + · · · . (109)

The origin of this term is exactly analogous to the FJ stiffness �(�), discussed above, except
that it is now the �1

2 term that determines the coefficient of e−2κ�.
The effective stiffness associated with the off-diagonal term ∇� · ∇ψ is more intriguing,

and is dominated by the non-locality of �1
1. Again, this is related to the second moment of the

Green’s function:

�12(�) = −a1 K ′′
2 (�) = a1

2
κ� e−κ� + · · · . (110)

The Hamiltonian (108) and the stiffness coefficients are precisely the same as those
derived by Boulter and Parry [17] and Rejmer and Napiorkowski [18]. The effective position
dependence of �12 plays an important role in the theory of surface correlation functions and
their sum-rules at complete wetting [19], and owes its origin to the non-locality of �1

1.



Derivation of a non-local interfacial Hamiltonian for short-ranged wetting: I 6449

5. Discussion

In this paper, we have shown how a non-local interfacial model for short-ranged wetting
phenomena in three dimensions can be derived from an underlying LGW Hamiltonian. Our
main result is an expression for the non-local binding potential functional, which is accurate to
exponential good order in the radii of curvature of the interface and wall. The binding potential
functional, derived for boundary conditions corresponding to fixed surface magnetization, and
within the DP approximation, has an elegant diagrammatic expansion

W = a1

(
+ + · · ·

)
+ b1

(
+ + · · ·

)

+ b2

(
+ + · · ·

)
(111)

where each planar graph corresponds to a functional �µν [�,ψ] connecting ν points at the
wall with µ points at the interface via a simple ‘zig-zag’. The coefficients a1, b1 and b2 are
determined explicitly and are geometry independent. This expression exactly recovers the full
form of the simpler binding potential function for planar and spherical interfacial configurations
and explains the origin of the interfacial area dependence in these potentials. This has not been
recognized previously.

The non-local Hamiltonian describes a host of different interfacial phase transitions
occurring in different geometries. The most well-studied example is the critical wetting
transition occurring at a planar wall. The critical singularities of this transition are controlled
by the two leading-order terms in the functional, so that one may approximate

W [�,ψ] ≈ a1 + b1 (112)

together with a hard-wall repulsion, which mimics the effect of the higher-order diagrams. This
is the same as the model studied in [1]. The non-locality of the �2

1 interaction appears to be
crucial for a description of critical wetting. Whilst the model (and the RG flow equations)
recover the model of FJ in the small-gradient limit, non-perturbative effects arise in the RG
flow. In particular, there is no stiffness instability mechanism [8] and the transition remains
continuous in the presence of large-scale interfacial fluctuation effects. However, whilst the
asymptotic criticality has the same non-universal character as in the very simplest capillary-
wave model [3], there are no significant deviations from mean-field-like criticality for certain
observables (surface susceptibility, etc) until the wetting film is rather thick and the area of
the wall is very large. This appears to comply with the findings of Ising model Monte Carlo
simulation studies [4].

Another geometry in which non-locality manifests itself directly is the linear wedge,
where numerical studies based on the LGW model reveal hidden relations (wedge covariance)
between wetting and filling which are naturally explained by the non-local theory [9].

To finish our article, we make a number of critical remarks. Firstly, the present derivation
is due for some criticism, since it is based on a model with fixed surface magnetization, and
it is limited to a DP bulk interaction potential �φ. Whilst previous experience with wetting
transitions is strongly suggestive that these features do not influence the underlying physics, it
is important to check this quantitatively. This is the topic of our second paper, where we extend
the Green’s function method to consider (a) perturbations about the DP approximation, (b) the
inclusion of squared Laplacian terms in the LGW model, and (c) coupling to a surface field and
enhancement.
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One may also remark that alternative choices for the definition of the location of the αβ
interface are possible. FJ, for example, introduce a number of integral criterion definitions
which were later refined by Boulter and Indekeu [20]. These alternative definitions do not alter
significantly the form of the binding potential function. It is likely that this is also the case for
the non-local functional.

Following on from the above two comments, the structure of the non-local functional
is in fact largely necessitated by exact statistical mechanic sum-rules. The binding potential
functional is essentially the same as the equilibrium free energy F[�,ψ] of a thin (magnetic)
film bounded by walls fixed at locations described by the fields �(x) and ψ(x), at which
surface fields h2 and h1 act, respectively. Taking derivatives of the free energy with respect
to the surface fields, generate sum-rules which relate response functions to integrals over the
connected spin–spin correlation function G(r1, r2). Thus, for example,

∂2 F[�,ψ]
∂h1∂h2

= kBT
∫ ∫

dsψ ds� G(r�, rψ) (113)

where, as earlier, r� and rψ denote points at the interface and wall, respectively. If the thickness
of the thin film is much greater than 1/κ , the function G appearing in the above formula will
be essentially the bulk Ornstein–Zernike correlation function, in which case the right-hand side
reduces immediately to the functional�1

1. Similarly, sum-rules for ∂2 F/∂h2
1 and ∂2 F/∂h2

2 give
rise to �2

1 and �1
2-like contributions. These sum-rules considerations are strongly suggestive

that the structure of the non-local functional is robust.
The non-local Hamiltonian can also be used to study adsorption phenomena in geometries

for which local Hamiltonians cannot be applied due to ambiguities concerning the way in which
the local interaction with the wall is measured. An example of this is the case of complete
wetting in a parabola or paraboloid. Macroscopic arguments show that the adsorption isotherms
must show some non-trivial cross-over behaviour when the radii of curvature of the meniscus
and the wall are similar [21]. This phenomenon is certainly experimentally observable [22] and
one would like to be able to understand it at a more microscopic level. The present non-local
model provides a far simpler method of studying this than density functional theory.

Finally, we point out that the diagrammatic expansion (111) lends itself towards a rather
physical interpretation of the origin of the binding potential functional. The essential ingredient
in the construction of the functional is the Green’s function K , which is simply proportional
to the bulk three-dimensional correlation function. Consequently, each time we encounter a
thick line connecting two points in a planar graph, one should think of this representing a
bulk-like correlation between the magnetization at both points. It is natural at this point to
invoke the bubble or wandering solid-on-solid tube model of low-temperature correlations,
which has been applied very successfully by Abraham, Fisher and co-workers [23, 24].
According to this picture, the correlation function between two points in a phase of net positive
magnetization below the critical point arises due to a bubble (in two dimensions) or tube (in
three dimensions) of net negative magnetization which connects the two points and is subject
to thermal fluctuations. If we adopt this picture, each thick line in a planar graph appears
to represent a contribution to the free energy arising from the wandering of a pseudo-one-
dimensional tube of the bulk (α phase) which tunnels from the interface to the wall. Higher-
order diagrams account for reflections of the wandering tube from either of the surfaces.
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