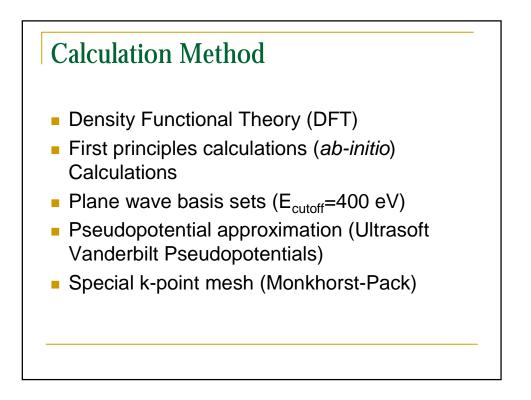
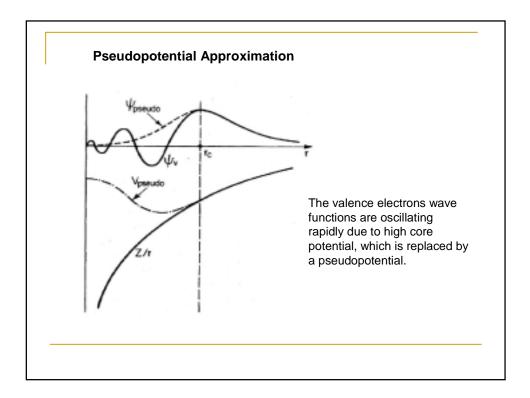
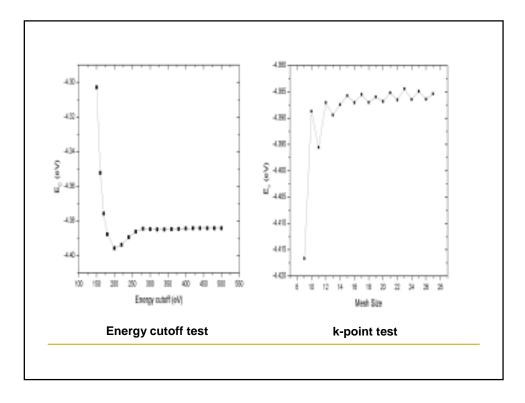
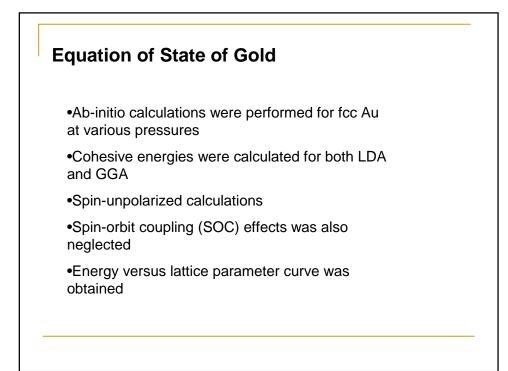

HIGH PRESSURE PROPERTIES OF METALS FROM FIRST PRINCIPLE CALCULATIONS: GOLD AS AN EXAMPLE

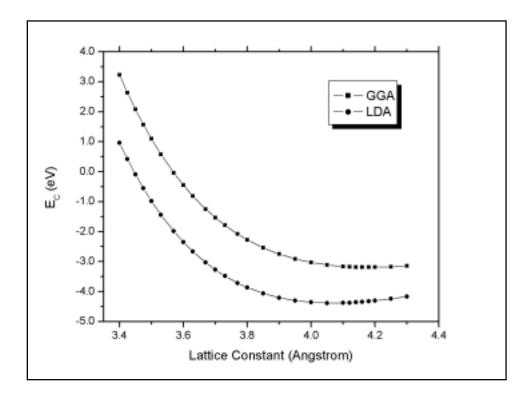

Oguz Gulseren Bilkent University Department of Physics


Acknowledgement: Rasim Ovali (M.S. Thesis)


INTRODUCTION

- Importance of Gold as a Calibration Standard
- Calculation Techniques
- Equation of State of Au
- Elastic Properties
- Phonon Dispersion Relations
- Conclusion





- · Overestimates bulk modulus, cohesive energy
- Underestimates lattice constant and thus cell volume
- Lower bound to the pressure for a given volume

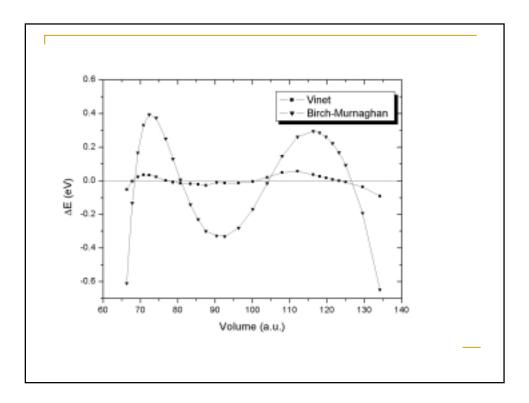
Generalized Gradient Approximation (GGA)

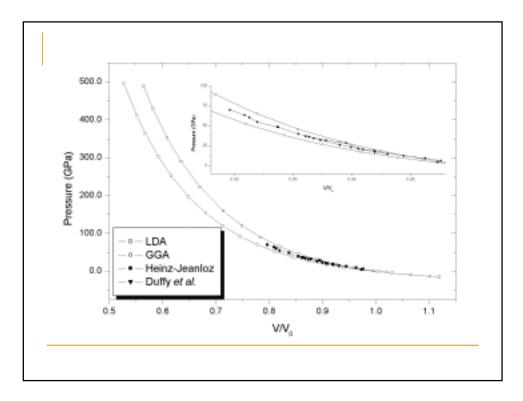
- Underestimates bulk modulus, cohesive energy
- Overestimates lattice constant and thus cell volume
- Upper bound to the pressure for a given volume

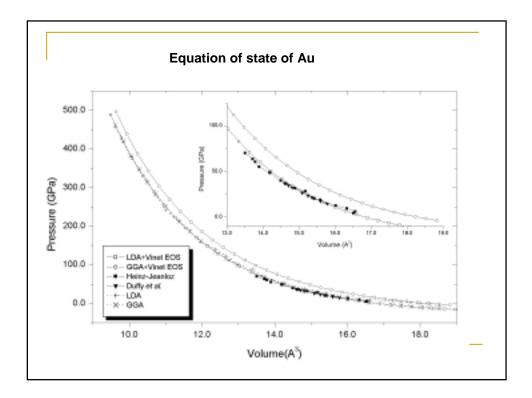
Vinet EOS

$$E(V,T) = E_0(T) + \frac{9B_0(T)V_0(T)}{\xi^2} \{1 + \{\xi(1-x)-1\}\exp\{\xi(1-x)\}\}$$

$$P(V,T) = \left\{\frac{3B_0(T)(1-x)}{x^2}\right\} \exp\{\xi(1-x)\}$$

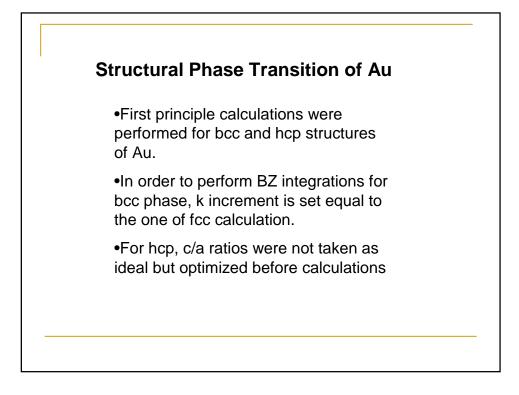

$$x = (V/V_0)^{1/3}$$

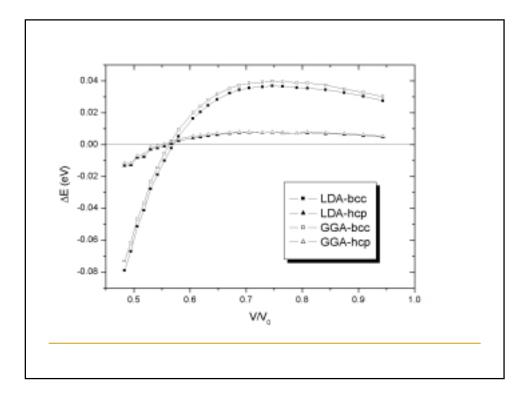

$$\xi = \frac{3}{2}(B'_0 - 1)$$
Birch-Murnaghan EOS

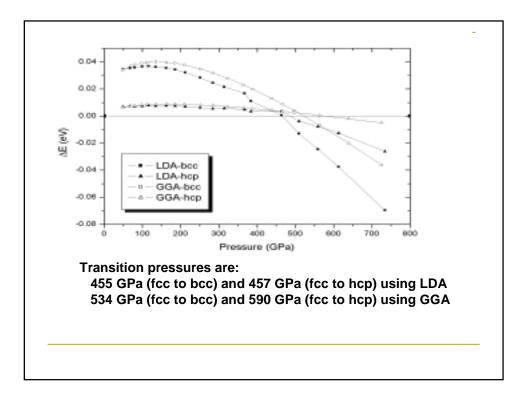

$$E(V,T) = E_0(T) + \frac{9B_0(T)V_0(T)}{8} \{1 + \frac{\kappa}{2}(x^{-2} - 1)\}(x^{-2} - 1)$$

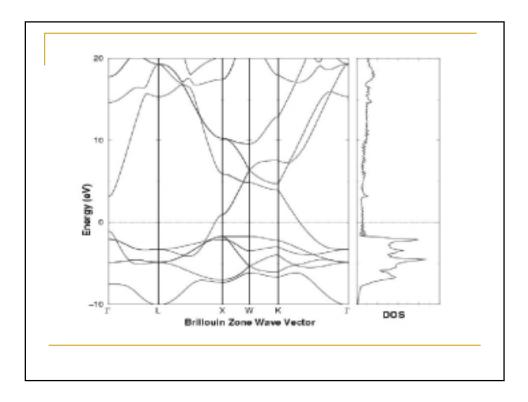
$$P(V,T) = \frac{3}{2}B_0(T)\{x^{-7} - x^{-5}\}\{1 + \frac{3}{4}\kappa(x^{-2} - 1)\}$$

$$\kappa = B'_0 - 4$$

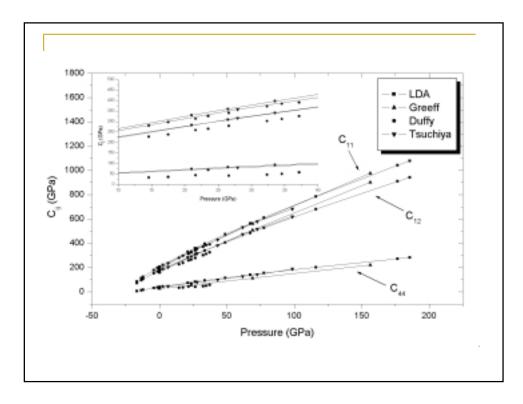


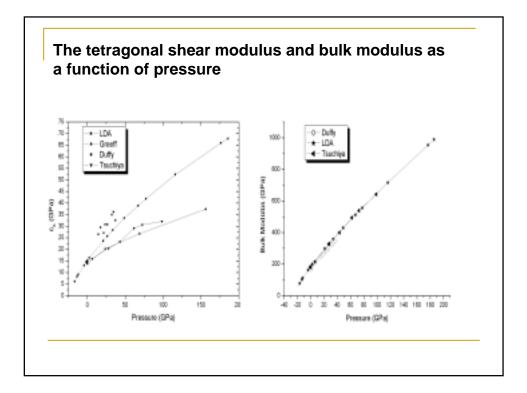


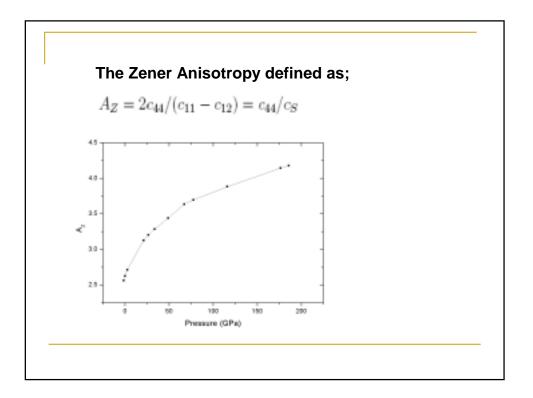

Zero-pressure volume, cohesive energy, bulk modulus and pressure derivetive of bulk modulus V_0 (Å ³) E_0 (eV) B (GPa) $\partial B/\partial P$ ref		nodulus			
	V_0 (Å ³)	E_0 (eV)	B (GPa)	$\partial B / \partial P$	ref
	18.29 (7.8)	-3.19(16)	134.16 (19.5)	5.97(8.5)	GGA


l	10 (22.)	20 (01)	D (OI a)	00,02	144
ĺ	18.29 (7.8)	-3.19 (16)	134.16 (19.5)	5.97(8.5)	GGA
I	16.82(0.8)	-4.39(15.6)	186.76 (12.1)	5.73(4.18)	LDA
I	16.96	-3.796	166.65	5.5	Heinz-Jeanloz
	16.95		170.65	4.72	Duffy

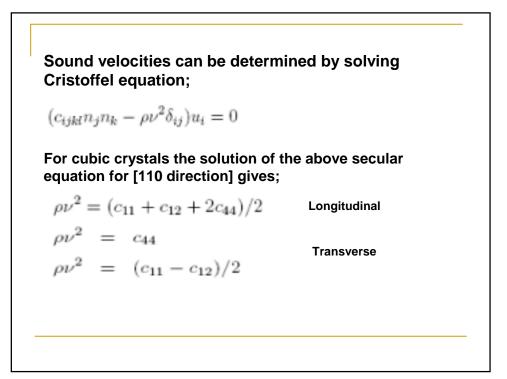
LDA predicts the physical properties of fcc Au better than GGA.

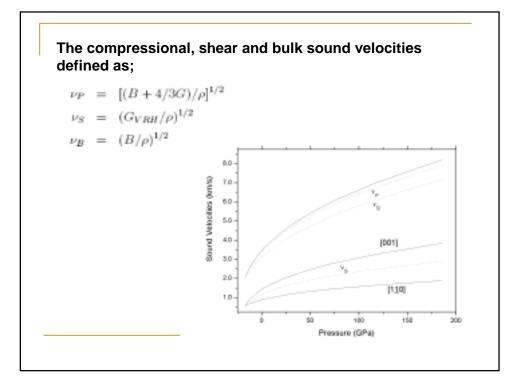


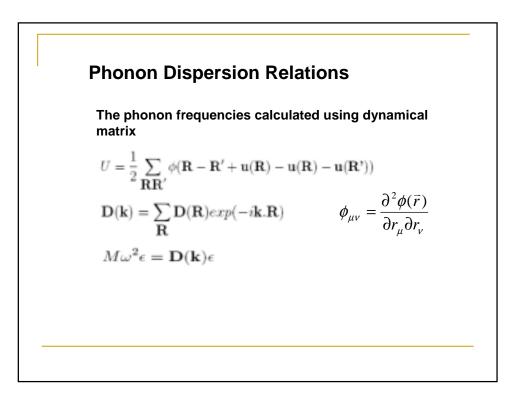


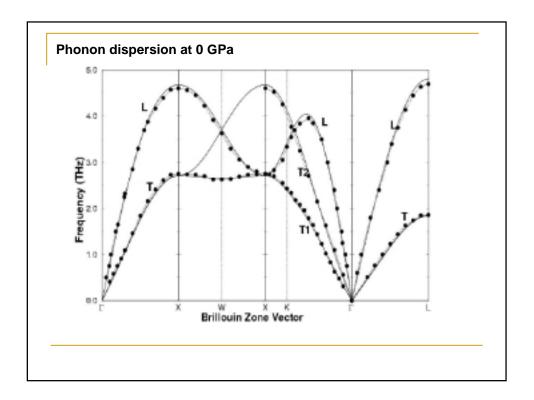

In any cubic crystals there a stiffness constants (c_{11} , c_{12} a	•
Tetragonal Deformation	Orthorhombic Deformation
	$\epsilon = \begin{pmatrix} 0 & \delta & 0 \\ \delta & 0 & 0 \\ 0 & 0 & \delta^2/(1 - \delta^2) \end{pmatrix}$
$E(\delta) = E(0) + 6c_s V \delta^2 + O(\delta^3)$	$E(\delta) = E(0) + 2c_{44}V\delta^2 + O(\delta)$
$B = (c_{11} + 2c_{12})/3$	
$c_s = (c_{11} - c_{12})/2$	

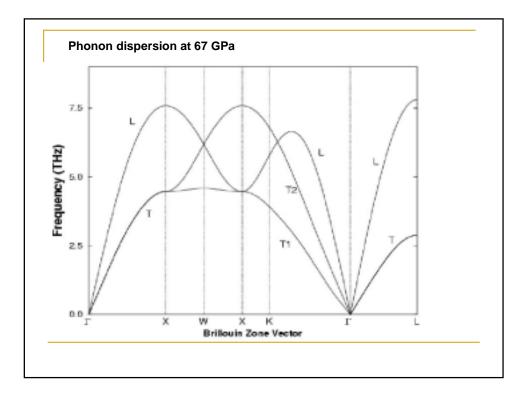
The zero-pressure elastic constants and pressure derivatives of elastic stiffness constants. The references with asterisk are experimental studies


ref	В	C_{s}	C11	C12	C44	$\partial c_{11}/\partial P$	$\partial c_{12} / \partial P$	$\partial c_{44}/\partial P$
LDA	186.8	15.2	207.0	176.6	39.9	6.30	5.41	1.81
GGA	135.5	11.3	150.6	127.9	26.9	6.47	5.74	1,86
Damiels*	172.6	14.7	192.2	162.8	42.0	7.01	6.14	1.79
Hiki*	173.5	14.6	192.9	163.8	41.5	5.71	4.95	1.52
Golding*	172.8	14.7	192.4	163.0	42.0	6.73	5.86	1.84
Tsuchiya	184.5	12.6	201.3	176.1	-36.9	5.97	5.38	1.43
Greeff	172.0	13.8	190.4	162.8	27.4			
Duffy*	168.5	14.5	187.8	158.8	33.5	6.0	4.3	0.9
Biswas(79K)*	179.8	15.5	200.4	169.5	44.5	6.49	5.66	1.79
Biswas(298K)*	173.0	14.4	192.2	163.4	41.8	6.71	5.85	1.83
Anderson(0K)	180.3	16.0	201.6	169.7	45.4			
Anderson(298K)	172.9	14.6	192.3	163.1	42.0			
LDA @ exp	178.0	14.5	197.2	168.3	37.1			

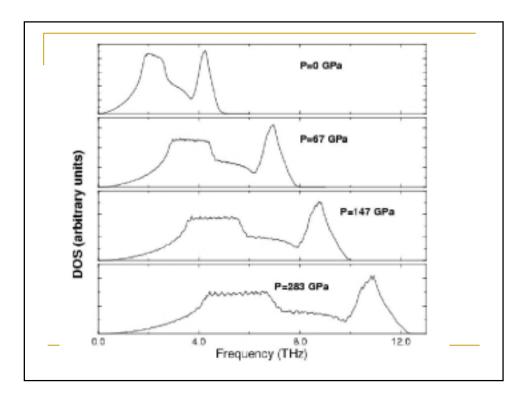







33-32	,	Properties:						
oigt av	-	jed and Reuss av	verage	ed sh	ear mod	lulus are		
G_V	=	$(c_{11} - c_{12} + 3)$	$c_{44})$	/5				
G_R	=	$5(c_{11} - c_{12})c_{44}/[4c_{44} + 3(c_{11} - c_{12})]$						
		ref	G_V	G_R	GVRH			
		LDA	30.0	24.2	27.1			
		GGA	20.8	17.6	19.1			
		Daniels ^a	31.1	24.1	27.6			
		Hiki*	30.7	23.8	27.3			
		Golding*	31.1	24.1	27.6			
		Tsuchiya	27.2	20.8	24.0			
		Greeff	22.0	19.7	20.8			
		Duffy*	25.9	21.9	23.9			
		Biswas(79K)*	32.9	25.4	29.1			
		Biswas(298K)*	30.8	23.7	27.3			
		Anderson(0K)	33.6	26.1	29.9			
		Anderson(298K)	31.0	24.0	27.5			
		LDA 9 exp	28.1	22.9	25.5			





CONCLUSION

- Physical properties of gold is calculated up to 500 GPa
- Equation of state of Au is obtained
- LDA approximates the physical properties of Au better than GGA at the 0-500 GPa pressure range
- Vinet type equation of state is better describe the EOS of Au
- Fcc phase to bcc phase structural transition is observed at ultrahigh pressure regime
- Fcc phase stability is observed up to 455 GPa
- Calculated elastic constants of gold at ambient pressure is in good agreement with experimental data
- With increasing pressure all elastic constants increase almost linearly
- At ambient pressure calculated vibrational spectra is in perfect agreement with neutron scattering data
- With increasing pressure phonon frequencies shift upward, after 100 GPa is almost linearly.