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Abstract

The study of quantum transport is important for understanding the propaga-
tion of electronic currents in matter on nanoscopic and mesoscopic scales. We
discuss the use of a novel orthogonal wavepacket basis set for non-equilibrium
many-electron transport problems. The basis is constructed from strobo-
scopic images of the continuous time evolution of an initial set of wavepackets.
This built-in time-related feature of the basis makes it efficient for practical
computational schemes and also suitable for providing physical insight into
transport phenomena.

We demonstrate how the wavepacket basis can be used to recover the
exact non-interacting ground state density for systems with a localised po-
tential barrier. Using a Hartree-like electron-electron interaction, we then
implement the basis in two 1D transport problems: the establishment of a
steady current and the abrupt switching on of a potential barrier in a system
in its ground state. Finally, we discuss the effect of spurious self-interaction
on the propagation of the wavepackets.
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Chapter 1

Introduction

1.1 Quantum transport and many-body sim-

ulations

Within condensed matter physics the field of quantum transport has received
a growing amount of attention in recent years, becoming a very active area
of theoretical and computational research. In general, it deals with the study
of the behaviour of electronic currents in matter down to the level of individ-
ual electrons. This requires a rigorous theoretical framework based on the
fundamental quantum mechanics of the system.

Studying the quantum nature of electronic transport is essential for un-
derstanding and predicting quantum effects such as tunnelling and the quan-
tum Hall effect, as well as several other non-local and quantised phenomena
observed in ultrasmall electronic devices over the last twenty years [1]. How-
ever, it is with the recent advent of nanotechnology and molecular electronics
that quantum transport has gained particular importance; in fact, the typical
sizes of electronic devices now being built are comparable to the wavefunc-
tions of the electrons flowing through them. It is therefore necessary to use
a quantum rather than classical theory of current. Applications range from
single-electron transistors [2, 3] and nanowires [4] to spintronic devices [5]
and research in quantum computation [6].

The quantisation of conductance in a quantum point contact (first ob-
served experimentally in 1988 [7]) is one of a number of phenomena that
can be understood by using a transport theory of non-interacting electrons,
such as the Landauer-Büttiker theory [8, 9]. In this theoretical framework,
the electric properties of nanoscale devices are analysed through a simplified
quantum mechanical model of the system. The key idea in this case is that of
semi-infinite reservoirs of electrons characterised by different electro-chemical
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CHAPTER 1. INTRODUCTION 2

potentials and connected together via a narrow constriction. The system is
in a state of permanent non-equilibrium, causing a current to flow through
the constriction. The Landauer-Büttiker approach consists of relating the
conductance to the reflection and transmission coefficients given by the scat-
tering states of the system. A different formalism, that of Non-Equilibrium
Green’s Functions [8, 9], can also be used to obtain the same results.

Crucially, however, these theories neglect electron-electron interactions.
When considering quantum-mechanical many-body systems these interac-
tions are always the most problematic, making the full Hamiltonian in-
tractable for more than a very limited number of particles. Unfortunately,
many-body effects cannot generally be neglected. Therefore, in order to suf-
ficiently reduce the computational cost of many-body simulations, several
simplifying assumptions need to be introduced when developing theories of
interacting electrons. These are often unjustified, and their effects on the
overall simulation not well understood.

The most widely used framework for many-body simulations is given by
Density Functional Theory (DFT) [10, 11]. This is an exact reformulation
of the quantum mechanics of many-electron systems. Using DFT, it is pos-
sible to calculate the ground state properties of such systems by considering
the electron density, rather than the much more complicated many-electron
wavefunction. The system of interacting electrons is replaced by an equiv-
alent system of non-interacting particles moving in an effective potential,
which accounts for all the many-body effects. The exact form of this po-
tential is unknown and has to be approximated. Although even very simple
models of the potential are successful in many cases, this approximation
presents the main difficulty in obtaining accurate and reliable results when
implementing DFT.

Although the previously mentioned non-interacting theories can be used
to analyse the transport properties of the fictitious system of non-interacting
particles in DFT, there is no definite relationship in this case with the
properties of the real system of interacting electrons. Therefore, a fully
ab initio quantum transport theory is needed. In recent years, much work
has been done on this problem by using a time-dependent formulation of
DFT (TDDFT) [12]. Instead of being restricted to ground state proper-
ties, TDDFT can be used to study electron dynamics, excitations and non-
equilibrium states [13, 14].
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1.2 Wavepacket methods

The use of wavepacket functions is a natural choice when analysing quantum
transport processes. In fact, due to their localised nature they allow for a
semi-classical interpretation of the evolution of the system and the movement
of the electrons involved, while at the same time providing a proper wave de-
scription of the electrons. Gaussian wavepackets, typically used in single
free-electron problems, are however not ideal in the case of many-electron
systems. In fact, due to the form of the wavepackets, the exclusion principle
restricts the available eigenstates within each one. In other words, it is not
possible to construct an orthogonal set of such wavepackets. This is impor-
tant, since we are interested in populating each wavepacket with a single
electron (two, including spin) in order to maintain their intuitive physical
interpretation.

One of the first proposed solutions to this problem was that of using cut-
off plane waves [15]. These are short pulses of finite range, and therefore
normalisable. In this case it is possible to construct a set of identical pulses
with non-overlapping ranges; these are necessarily orthogonal, and so can be
populated to describe a uniform current flow.

A different wavepacket method, and one that has found numerous appli-
cations, is that of Wannier functions [16, 17, 18]. These are sets of localised,
orthogonal functions that can be calculated by summing the Bloch states in
a perfect crystal over all the values of the wavevector k within the first Bril-
louin zone. The resulting functions are labelled according to the band and
lattice site to which they belong. One of the convenient features of this basis
set is that by populating a small number of wavepackets it is possible to cal-
culate the exact local eigenstates for a non-interacting many-electron system.
However, Wannier functions have no specific advantages for time-dependent
problems.

Instead, the new stroboscopic wavepacket approach discussed in this
Dissertation is tailored for use in quantum transport scattering problems.
This method is based on a generalisation of the wavepackets used by Mar-
tin and Landauer to analyse quantum noise in mesoscopic systems [19].The
wavepacket basis is constructed in a similar way to Wannier functions; in
this case, however, the complete basis set is obtained by time-evolving an
initial set of appropriately chosen wavepackets through successive time steps.
Therefore, for each wavepacket this will result in a collection of stroboscopic
images of its time evolution. Each collection of stroboscopic images forms
a separate subset of the complete basis. The images are all orthonormal,
so it is possible to place a single electron in each one. Furthermore, in the
subset’s characteristic time step every electron in the subset will have moved



CHAPTER 1. INTRODUCTION 4

precisely from its initial image into the subsequent one. This property of the
basis is particularly useful for scattering problems, since the propagation of
electrons is known exactly far from the scattering potential and only needs to
be calculated numerically close to it. Another advantage of the basis is that,
similarly to Wannier functions, by populating a small number of wavepack-
ets we recover the exact non-interacting many-electron ground state of the
system. These properties are discussed in more detail in Chapter 2.

1.3 Overview

The aim of our investigation was to explore the properties of the stroboscopic
wavepacket basis and to use the basis for 1D simulations of the propagation
of electronic current through an atomic point contact. Of particular interest
was the effect of including electron-electron interactions in the simulation
(including spurious self-interaction), so as to assess the validity of some of
the approximations used in TDDFT. Another important objective was the
investigation of transient phenomena before the establishment of a steady
current.

Chapter 2 will introduce the generalised theoretical description of the
basis set and the special cases used for our investigations. It will then dis-
cuss how the basis can be used for non-equilibrium simulations, both for
non-interacting electrons and including a simple electron-electron interac-
tion. Chapter 3 will discuss the computational methodology for carrying out
the simulations. Chapter 4 will present the results obtained and how they
relate to our objectives. Finally, Chapter 5 will discuss future work needed
on the simulations, including possible ways of extending the use of the basis.

A paper by P. Bokes, F. Corsetti and R. W. Godby [20] introducing the
stroboscopic wavepacket basis (including its application for time-dependent
quantum transport simulations discussed here) has been submitted for pub-
lication; the general definition of the basis and its formal properties follows
the one in the paper.



Chapter 2

Theory

2.1 The stroboscopic wavepacket basis set

We will start with the most general definition of the wavepacket basis and
then see how this can be used in practice to generate a set of localised
wavepackets starting from the plane wave basis, or a set of highly non-
localised (though none the less useful) split wavepackets starting from the
scattering states for a square potential barrier.

We work in atomic units throughout, therefore e = h̄ = me = a0 = 1.To
define the basis set we start from a reference Hamiltonian Ĥ for an extended
system with a continuous spectrum of eigenenergies ε from 0 to∞. In general,
these will correspond to a complete, orthogonal set of degenerate eigenstates
|ε, α〉:

Ĥ|ε, α〉 = ε|ε, α〉. (2.1)

α may represent one or several discrete indices1. These eigenstates need to
be normalised such that

〈ε, α|ε′, α′〉 = δ(ε− ε′)δα,α′ . (2.2)

We then generate an initial set of wavepackets by dividing the energy spec-
trum into a number of energy bands {(εαn, εαn+1)}∞n=0 of width ∆εαn = εαn+1−εαn,
and integrating the original eigenstates of the reference Hamiltionian over
each band as follows:

1In fact, for more complicated systems (such as 2D and 3D ones), α may also be a
continuous index.

5
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|n, 0, α〉 =
1√
∆εαn

∫ εαn+1

εαn

∑
α′

Uα,α′(ε′)|ε′, α′〉 dε′. (2.3)

This will therefore result in a wavepacket function corresponding to each
band. Uα,α′(ε′) is a unitary matrix that can be specified to optimise the initial
set of wavepackets for a desired purpose [20]. The factor of 1/

√
∆εαn ensures

that the wavepackets are normalised. For a given Ĥ and Uα,α′(ε′), the shape
and spread of the wavepackets will depend on the height and width of their
corresponding energy band. It should be noted that each value of α has a
separate set of energy bands and wavepackets. The division of the energy
spectrum into bands can be done arbitrarily, so long as the whole spectrum
is covered; this allows the bands to be chosen in a convenient way depending
on the system to be studied. Furthermore, the division may be different for
each α (although this is usually not convenient).

Each wavepacket of this initial set is then forward and backward time-
propagated:

|n, t, α〉 = e−iĤt|n, 0, α〉. (2.4)

Finally, by taking snapshots of this time propagation at regular intervals
ταn = 2π/∆εαn for each band we generate the complete basis set

|n,m, α〉 = e−iĤmτ
α
n |n, 0, α〉, (2.5)

where m = 0,±1,±2, . . .
The wavepacket basis is therefore composed of an infinite number of en-

ergy bands, each containing an infinite number of snapshots of the time
propagation of an initial wavepacket. The basis functions can be identified
by three indices: α, the energy band n in the division of the spectrum for
that α, and the snapshot m within that band. The time step τ is chosen to
ensure orthonormality of each snapshot within a band. Any two snapshots
from different bands must also be orthogonal, since they are linear combina-
tions of eigenstates with no eigenenergies in common (since the energy bands
don’t overlap).

Finally, the wavepacket basis can also be shown to be complete; in fact,
any eigenstate of the reference Hamiltonian can be expanded in terms of the
wavepacket snapshots of the energy band within which lies the eigenenergy
of the state. This means that the wavepacket basis must be complete, since
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the set of reference eigenstates is also complete. The expansion coefficients
are

〈n,m, α|ε, α〉 =
1√
∆εαn

eiεmτ
α
n ; (2.6)

therefore, we obtain ∑
|n,m, α〉〈n,m, α|ε, α〉 = |ε, α〉. (2.7)

2.1.1 Plane wavepackets

The simplest stroboscopic wavepacket basis set is derived from the conven-
tional plane wave basis eiαkx. This basis provides a set of solutions for a flat
potential (i.e. the reference Hamiltonian is simply Ĥ = p̂2/2) with any energy
ε = k2/2. In this case α = ±1, corresponding to right and left-propagating
waves. To make sure these reference eigenstates satisfy (2.2), we introduce a
normalising factor 1/

√
2πk. Therefore,

|ε, α〉 =
1√
2πk

eiαkx. (2.8)

Thus,

〈ε, α|ε′, α′〉 =
1

2π
√
k
√
k′

∫ ∞
−∞

e−i(kα−k
′α′)x dx. (2.9)

Since α = ±1 and k > 0, this becomes

〈ε, α|ε′, α′〉 =
δα,α′

2π
√
k
√
k′

∫ ∞
−∞

e−i(k−k
′)x dx. (2.10)

Thus,

〈ε, α|ε′, α′〉 =
δ(k − k′)δα,α′

k′
. (2.11)

Finally, by using δ(k − k′) = k′δ(ε− ε′) we obtain the desired normalisation
condition stated in (2.2).

Taking Uα,α′(ε′) = δα,α′ , the initial wavepacket for each energy band is
given by
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|n, 0, α〉 =
1√

2π∆εαn

∫ kαn+1

kαn

√
k′eiαk

′x dk′. (2.12)

Fig. 2.1 shows some typical examples of plane wavepackets (PWP) for a range
of energy bands. As can be seen from the figure, the wavepackets for narrow
energy bands resemble sinc2(x) functions; in fact, if we assume that the value
of
√
k′ is approximately constant throughout the interval and equal to kαn , it

can be shown that (2.12) becomes

|n, 0, α〉 =
1

x

√
2kαn
π∆εαn

(
cos(Ax) sin(Bx) +

i

α
sin(Ax) sin(Bx)

)
, (2.13)

where A = kαn + ∆kαn/2 and B = ∆kαn/2. Taking the modulus squared we
obtain

 0

 0.01

 0.02

 0.03

-200 -100  0  100  200

D
en

si
ty

 (
1/

a 0
)

x (a0)

[0.35,0.5]
[0.5,0.55]

[0.55,0.65]

Figure 2.1: Examples of typical initial wavepackets obtained for three energy
bands. The labels refer to the energy intervals used in each case (in Ha).
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2kαn sin2(∆kαnx/2)

π∆εαnx
2

, (2.14)

which is a sinc2(x) function as expected.
Time-propagating (2.12) for time steps τ using the time-dependent Schrö-

dinger equation we obtain the complete set of basis functions:

|n,m, α〉 =
1√

2π∆εαn

∫ kαn+1

kαn

√
k′e

i
“
αk′x− k

′2
2
mταn

”
dk′. (2.15)

Fig. 2.2 shows two sets of snapshots for different energy bands.
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Figure 2.2: Sets of snapshots (i.e. stroboscopic images) of the time evolution
of the initial wavepacket for two energy bands; these are used to construct
the subsets of the complete basis. For band (a) a slight dispersion of the
wavepackets is noticeable.
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We can now easily show that these functions are orthonormal with respect
to m:

〈n,m, α|n,m′, α〉 =
1

∆εαn

∫ kαn+1

kαn

k′ei
k′2
2
ταn (m−m′) dk′. (2.16)

Changing the integration variable, this becomes

〈n,m, α|n,m′, α〉 =
1

∆εαn

∫ εαn+1

εαn

eiε
′ταn (m−m′) dε′

= δm,m′ .

(2.17)

2.1.2 Scattered wavepackets

The plane wavepackets are constructed from the eigenstates of a flat reference
potential; similarly, we can choose to use the scattering states for a potential
step or barrier. We consider the case of a square barrier. The reference
potential is now

V (x) =

{
V0, |x| ≤ a

0, |x| > a;
(2.18)

the scattering states can be thought of as electron “beams” being partially
transmitted through the barrier and partially reflected off it. The incident,
transmitted and reflected beams are all represented by plane waves e±ikx with
appropriate sign. Therefore, on the incident side the wavefunction is

ψ(x) = Aeikx +Be−ikx. (2.19)

Inside the barrier the wavefunction has a similar form:

ψ(x) = Ceiκx +De−iκx, (2.20)

where κ =
√

2(ε− V0). On the transmitted side the wavefunction is

ψ(x) = Eeikx. (2.21)

By equating the wavefunction and its derivative at the sides of the barrier we
can solve for the coefficients B,C,D,E in terms of A, k, V0, a. The scattering
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states can now be integrated for each energy range and time-propagated as
before to obtain the complete basis set of scattered wavepackets (SWP)

|n,m, α〉 =
1√

2π∆εαn

∫ kαn+1

kαn

√
k′
(
C1(k′)eik

′′x + C2(k′)e−ik
′′x
)
e−i

k′2
2
mταn dk′,

(2.22)

where k′′ = κ inside the barrier and k elsewhere.
Fig. 2.3 shows SWP snapshots for a typical energy band. For m < 0, i.e.

for backward time propagation, a single wavepacket approaches the barrier on
the incident side. Far away from the barrier the SWP is approximately equal
to its PWP counterpart; however, as it approaches the barrier (and m is still
negative but small, close to the initial wavefunction m = 0), the wavepacket
becomes distorted. Once it has passed the barrier (m > 0), the SWP splits
into two components, one moving forward (the transmitted part) and one
backward (the reflected part). Once again as the two components have moved
far away from the barrier they become PWPs again, with amplitudes equal
to the reflection and trasmission probabilities R = |B/A|2 and T = |E/A|2.
Therefore, the SWPs become delocalised for m > 0, although instead of being
spread throughout the whole system they are simply split into two localised
components.

Similarly to the PWP basis, which has right and left-going PWPs, the
SWP basis has right and left-incident SWPs for each energy band. The
direction of propagation is determined by α.

t

Figure 2.3: Snapshots of the time evolution of a SWP (using energy band
[0.5, 0.55]) due to a narrow barrier. V0 = 0.75Ha and a = a0. There is a
noticeable phase shift in the transmitted component of the wavepacket.
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2.2 Applications for non-equilibrium simula-

tions

2.2.1 Non-interacting electrons

We have seen that an electron can be placed in a single wavepacket, and
that in a time-independent potential equal to the reference potential for the
basis it will propagate exactly from one wavepacket to the next in time τ .
In the simplest case, for a flat potential we obtain PWPs which are highly
localised, regularly spaced throughout the system and propagate with little
dispersion over a short range. These can be used in numerical simulations
to study the time-dependent dynamics of electrons scattering through an
arbitrary localised potential. In fact, far away from the potential obstacle
the electrons are in an extended region of flat potential, and so the PWPs are
approximate eigenstates of the system (as seen in the SWP basis). In this
region the exact time evolution of the current is known and does not need to
be simulated; it is only necessary to perform a numerical propagation once
the electron is in the central region of localised potential. However, after
being scattered through this obstacle the wavepacket will leave the central
region and return to the flat regions on either side, therefore also returning
to the exact PWP propagation.

The propagation of electrons in a potential can be simulated by using a
quantum mechanical evolution operator known as a propagator. The propa-
gator time-evolves the system as follows:

ϕ (t) = Û (t, t0)ϕ (t0) . (2.23)

By substituting this into the time-dependent Schrödinger equation, we see
that for a time-independent Hamiltonian the propagator simply becomes

Û (t+ ∆t, t) = e−i∆tĤ . (2.24)

This unfortunately restricts us to the case of non-interacting electrons, as
electron-electron interactions will add time-dependent terms to the Hamil-
tonian. It should be noted that the exponential of a matrix Â is defined in
terms of the Taylor expansion

eÂ =
∞∑
n=0

Ân

n!
; (2.25)
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in practice, this will need to be approximated.
One of the main desirable properties of the wavepacket basis is that is

it possible to recover the exact non-interacting many-electron ground state
density of a system whose Hamiltonian is equal to the reference Hamiltonian
for the basis set simply by occupying all the basis functions (i.e. summing
the contributions of all the stroboscopic images) in the energy bands be-
low the Fermi energy EF. Furthermore, since the wavepackets are highly
localised it is only necessary to consider for each band a small number of
them lying within a region of interest; in this way it is possible to calculate a
good approximation of the local ground state density by using very few basis
functions.

In the case of a localised potential not equal to the reference one it is also
possible to calculate the ground state density in a similar fashion, since we
know that far away from the central region of non-flat potential the density
will be approximately flat (i.e. equal to the ground state density for a flat
potential). Therefore, we can populate the edges of the system with PWPs
up to EF and then let them propagate through the central region (both
for right and left-incident wavepackets); once a steady current spanning the
whole central region has been established in both directions the system will
be in its ground state. This must be the case since the edges of the system
are fixed to the correct flat ground state.

2.2.2 The Hartree interaction

The numerical propagation method for non-interacting electrons can be ex-
tended to include the effects of electron-electron interactions. The first step
towards a full ab initio simulation (using for example TDDFT) is the addi-
tion of a time-dependent Hartree term to the static potential. The Hartree
potential is of the form

V H
i (r) =

N∑
j 6=i

∫
|ψj (r′)|2

|r− r′|
d3r′; (2.26)

each electron, therefore, feels a Coulomb repulsion from the average position
of all the others. Replacing the sum with the electron density n(r), we obtain

V H
i (r) =

∫
n(r′)

|r− r′|
d3r′. (2.27)

However, this introduces a self-interaction problem, since n will also include
the contribution to the density from the electron feeling the potential. To
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eliminate this problem we would need to subtract the contribution of each
electron in turn from the total density; in practice, however, this is generally
ignored due to the added computational cost.

A further problem is that the Hartree potential is not well-defined in 1D.
In fact, at x = x′ the integrand is undefined, causing singularities to appear
in the potential. Instead, in 2D and 3D systems the singularities are removed
by the integration.

Therefore, instead of the Hartree potential we shall use a similar point
interaction term:

V H
i (x) = W

∫ ∞
−∞

n(x′)δ(x− x′) dx′

= Wn(x),

(2.28)

where W is an arbitrary weighting. This term is well-defined since it is
simply proportional to the electron density. Although it is not an accurate
representation of the Coulomb interaction it does preserve the main idea of
the Hartree potential, namely, that electrons will tend to be repelled from
regions of higher density to regions of lower density.

After the addition of the Hartree term to the potential, the Hamilto-
nian for the system becomes time-dependent; therefore, the definition of the
propagator from (2.24) is no longer exact. However, if we consider suffi-
ciently small time intervals ∆t over which Ĥ is approximately constant this
definition can still be used for the numerical propagation scheme. However,
in this case it will be necessary to update Ĥ after each time step (since the
electron density and therefore the potential will have changed).



Chapter 3

Methodology

3.1 Plotting the basis functions

As shown in Chapter 2, both the PWPs and SWPs are obtained by integrat-
ing plane waves (or combinations of plane waves) over a small k range with
appropriate weightings. In both cases the integral is non-analytic; therefore,
it is necessary to perform a numerical integration. There are several different
families of algorithms to do so; for the purpose of plotting the wavepackets,
an extended closed Newton-Cotes method was chosen.

The Newton-Cotes family of methods for numerical integration is based
on the evaluation of the integrand at equally spaced points. The two simplest
methods in this family, known as the trapezium rule and Simpson’s rule, fit
a linear or quadratic polynomial to the evaluated points. These are closed
methods, since the integrand is evaluated at the endpoints of the interval.
Extended methods subdivide the interval and apply one of the basic methods
repeatedly to each subinterval.

The specific extended formula used for integrating over the k bands is

∫ kN

k1

f(k) dk = δk

[
3

8
k1 +

7

6
k2 +

23

24
k3 +

N−3∑
i=4

ki

+
23

24
kN−2 +

7

6
kN−1 +

3

8
kN

]
+O

(
1

N4

)
.

(3.1)

This formula can be derived by fitting cubic polynomials through successive
overlapping groups of four points [21]. The error estimate for this method
is equal to that of an extended Simpson’s rule; however, (3.1) has the com-
putational advantage that only the first and last three points need to be

15
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multiplied by a coefficient, while the great majority of the points simply
need to be summed. This is not the case for Simpson’s rule.

Since we are integrating plane waves over a range of k, we know that
the integrand will be an oscillating function with λ = 2π/x. Therefore,
depending on the x range being plotted it is possible to calculate the smallest
wavelength of the integrand and hence choose the value of the sampling step
δk accordingly (so as to be < λ).

While plotting the PWPs is a straightforward application of (3.1) to
(2.15), the SWPs present a number of extra complications. In fact, the
integrand in (2.22) is now a sum of both right and left-going plane waves
with coefficients C1 and C2, which depend on k and x (i.e. equal to A and
B on the incident side of the barrier, C and D inside the barrier, and E and
zero on the transmitted side). Therefore, the coefficients have to be calcu-
lated for each k value needed for the numerical integration, and the correct
two have to be selected each time x enters a new region. Furthermore, the
wavevector is also dependent on x, since inside the barrier it is modified by
V0. To make the whole process more efficient, the values of the coefficients
for the entire k range are stored in an array and reused when plotting each
new x point.

3.2 Calculating the propagator

The propagator matrix is needed for any non-equilibrium simulation. During
the simulation, the state vector for each electron is time-evolved by a small
time step ∆t when premultiplied by the propagator. The form of the propa-
gator is given by (2.24). As already noted, the exponential of the Hamiltonian
is defined by a Taylor expansion. For the purpose of the numerical simula-
tion, we can neglect terms smaller than Ĥ4. This is conditionally stable [22]
and relatively fast to calculate even for large matrices. Therefore, to obtain
the propagator we need to first calculate the Hamiltonian for the system. It
is convenient to consider the kinetic and potential terms separately:

Ĥ = T̂ + V̂ (3.2)

Therefore, the kinetic matrix elements are given by

Tmn =
1

2

∫ ∞
−∞

ψ∗m
∂2

∂x2
ψn dx, (3.3)

and the potential matrix elements by
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Vmn =

∫ ∞
−∞

ψ∗mV (x)ψn dx. (3.4)

Firstly we consider the kinetic matrix. We can show that the matrix
element for any two basis functions within the same energy band (and with
the same α) only depends on the difference between their snapshot numbers
m−m′. In fact, considering the time derivative of the matrix element between
two functions, we find that

∂

∂t

∫
ψ∗mĤψn =

∫ {[
∂

∂t
ψm

]∗
Ĥψn + ψ∗mĤ

[
∂

∂t
ψn

]}
d3r

=

∫ {[
1

i
Ĥψm

]∗
Ĥψn + ψ∗mĤ

[
1

i
Ĥψn

]}
d3r

=
1

i

∫ {
−ψ∗mĤ2ψn + ψ∗mĤ

2ψn

}
d3r

= 0.

(3.5)

For V = 0, Ĥ = K̂ and so any basis function m time-evolves into m + 1 in
time step τ ; therefore, for two basis functions, m−m′ at each time step stays
constant. Since we have shown that their matrix element also has to stay
constant, it follows that any two basis functions with the same m−m′ must
have the same matrix element. Furthermore, since the kinetic matrix does
not depend on V, this must also apply to cases in which V 6= 0. Therefore,
the kinetic matrix simplifies to

T̂ =


T00 T01 T02 · · · T0N

T ∗01 T00 T01 · · · T0(N−1)

T ∗02 T ∗01 T00 · · · T0(N−2)
...

...
...

. . .
...

T ∗0N T ∗0(N−1) T ∗0(N−2) · · · T00

 . (3.6)

Using the PWP basis, the value of the matrix elements can be calculated
analytically:
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K0n =
1

4π∆ε

∫ k+∆k
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[∫ ∞
−∞
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2∆ε

∫ k+∆k

k

k′3e−i
k′2
2
nτ dk′

=
1

∆ε

∫ ε+∆ε

ε

ε′e−iε
′nτ dε′.

(3.7)

This derivation also shows that any matrix element between basis functions
in separate energy bands must be zero. In fact, since the two integrals would
be over different intervals, the delta function would always be zero.

Unfortunately, the potential matrix elements can’t be derived analytically
using the same approach; therefore, a numerical integration is employed, us-
ing the same algorithm as for the basis function calculations. In this case, the
use of localised wavepackets is very useful, since it is possible to significantly
reduce the computational cost by employing a cut-off range from the central
peak. By doing so only two small regions of space need to be considered for
the integration, as shown in Fig. 3.1.

Calculating the matrix elements using the SWP basis is very similar to
the method used for PWPs. In this case, however, the SWPs don’t time-
evolve into each other in a zero potential. Instead, they do so in a system
in which the potential is equal to the reference potential used to construct

Figure 3.1: Potential matrix element calculation between two localised
wavepackets for a square barrier potential. By employing a cut-off distance
from the peak of the wavepackets it is only necessary to integrate over the
two small overlapping sections of the three ranges.
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the basis set. For this setup, the proof that the matrix elements only depend
on m − m′ is still valid; furthermore, we can show that they are equal to
the corresponding kinetic matrix elements for PWPs. This is because a
long time before hitting the barrier (m � 0), the SWPs tend to PWPs,
and so must have the same matrix elements. However, using the argument
that the elements only depend on m − m′, we see that there can’t be any
difference between the SWP elements far away from the barrier and close
to it. Therefore, for this setup the SWP total matrix and the PWP kinetic
matrix are completely identical.

This result can still be used when the system potential is not equal to the
reference potential. The Hamiltonian can now be rewritten as

Ĥ =
(
K̂ + V̂0

)
+
(
V̂ − V̂0

)
= K̂PWP + ∆V̂ ,

(3.8)

where V0 is the reference potential and ∆Vmn is the matrix element obtained
by using the difference between the two potentials ∆V = V − V0.

Finally, for the case of a time-dependent propagator (with the addition
of the Hartree term to the potential), we need to recalculate the potential
matrix after each time step, although the kinetic matrix is unchanged. In
practice, provided that the electron density of the system changes sufficiently
slowly, we only need to update the propagator at regular intervals N∆t. The
time-dependent potential matrix elements are given by

Vmn =

∫ ∞
−∞

ψ∗m
(
∆V + V H

)
ψn dx, (3.9)

where V H is calculated from (2.28).

3.3 Setup for non-equilibrium simulations

We have shown how to calculate the wavepacket basis functions and the
propagator matrix for the purpose of a simulation. Two principle setups
were investigated: the abrupt switching on of a potential barrier in a system
in equilibrium, and the establishment of a steady current in a system starting
in its ground state by injecting a file of right-going electrons in an unoccupied
energy band.
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Although the propagator matrix is stable and sufficiently accurate for
our purposes1, the finite nature of the simulations introduces a problematic
and unphysical effect in its behaviour. In fact, once an electron propagated
through the system reaches one of the edges, it “bounces back” to the other
edge. This is an inevitable consequence of the requirement on the propagator
to be unitary. In fact, considering our numerical propagation as part of
an extended system, we know that once an electron reaches the edge of
the simulated range it should pass into the analytic region and continue
propagating forwards exactly from one basis function to the next. However,
since this analytic region is not included in the simulation, we simply require
it to disappear after reaching the last wavepacket that is being used. Instead,
to preserve its normalisation it bounces back to the first wavepacket at the
other end of the system and continues moving as before. Furthermore, due
to the nature of the propagation from one basis function to the next, the
electron wavepacket becomes distorted when approaching the edge.

This issue is resolved by manually removing electrons approaching the
edges of the system. Since each electron stays localised and the time taken
for it to propagate through the system is known, this can be done easily
and with little disruption to the total density close to the central barrier.
Therefore, each electron is propagated for a limited time, after which it is
assumed that it has passed into the analytic regions outside the range of the
simulation and so is removed. This assumption is generally valid for narrow,
simple barriers (ones not supporting bound states), since only a small phase
shift will be introduced in the transmitted and reflected wavepackets.

Buffer regions also need to be introduced at either side of the system.
These are assumed to be in the analytic region and so don’t need to be pop-
ulated with electrons; their purpose is simply to allow the electrons inside the
actual system to propagate up to the last basis function without distortion,
and to further prevent the possibility of any components reaching the edges
and bouncing back. Therefore, the electron density should always be close
to zero in the buffer regions. However, since they are actually part of the
analytic region, when calculating the Hartree potential the density needs to
be fixed to the exact flat ground state density for the system (Fig. 3.2).

By implementing buffer regions and propagating electrons for a finite time
before removing them, it is possible to use the wavepacket basis set effectively
to investigate time-dependent quantum transport phenomena. The simplest
case to be considered is that of a system in it ground state being perturbed

1It is possible to converge the propagator matrix elements to their true values i.e. for
the case in which all the basis functions are included in the energy bands present. The
difference was found to be negligible compared with other sources of error (such as the
accuracy of the basis functions and finite system size effects).
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Simulated densityFixed density
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Buffer region
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Figure 3.2: Use of buffer regions in many-electron simulations. Although the
wavepackets are unoccupied in these regions, the electron density used to
calculate the Hartree potential is fixed to the correct value for full bands.

Simulated regionBuffer region

Full band

Full band

Current band

Buffer region

Figure 3.3: Setup for simulating the establishment of a steady current in an
empty energy band. Right-propagating electrons are injected into the system
every τ in the left-most wavepacket within the simulated region.

by the introduction of a potential barrier. Initially, V = 0; therefore, it is
sufficient to use a PWP basis and start the simulation by populating each
wavepacket in the system up to EF with an electron. With the introduction
of the barrier at t = 0 both right and left-going electrons will start being
scattered, producing oscillations in the electron density. After a sufficiently
long time we expect these transient effects to settle into a new steady state,
equal to the ground state obtained by populating SWPs constructed from
the same potential barrier. This method can also be used starting from a
system with a steady current (i.e. with an energy band full for right-going
wavepackets and empty for left-going ones).

Another simulation to be considered is the establishment of a steady cur-
rent (Fig. 3.3). In this case, the system starts in its ground state as before;
however, instead of introducing a perturbing barrier, right-going electrons
are manually added in an empty energy band from the left side of the sys-
tem every time step τ . This creates a file of electrons propagating through
the central region; once they span the entire range of the system (and so
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start being removed from the right side), we expect a steady current to be
established.

Fig. 3.4 shows a flowchart of the main structure of the Fortran code
written to implement the wavepacket basis in non-equilibrium simulations;
it includes all the methods discussed in this chapter.

Read user inputs
Is the number of basis fns. specified?

Calculate kinetic matrix elements analytically

Occupy basis fns. with electrons according to user input

Calculate the total potential (external + Hartree)

Calculate potential matrix elements using numerical integration

Calculate the Hamiltonian Calculate the propagator Time−evolve the system by one time step

Determine appropriate number of basis fns. for each band
(so as to cover the simulated range)

Calculate the electron density Add/remove electrons if necessary
Is t=update time for Hartree potential?

No

Plot basis fns.

Plot the external potential

Yes

Yes

No

Figure 3.4: Flowchart representation of a time-dependent simulation.



Chapter 4

Results and Discussion

4.1 Wavepacket images

A few typical wavepacket plots, obtained by using the numerical integration
method discussed previously, have already been shown in Chapter 2 (Figs.
2.1, 2.2 and 2.3). Before proceeding to the results of calculations using the
wavepackets, it is worth briefly discussing a potential pitfall of this numerical
method.

It was noted when plotting the basis functions over large x ranges that
exact images of the original wavepacket appear on either side of it, at equally
spaced intervals L. Furthermore, the distance between images increases with
decreasing δk (the sampling step used in the numerical integration), as shown
in Fig. 4.1.

This anomaly can be understood by considering the effect of approximat-
ing an integral with a sum. The original definition of the PWPs is similar
to a continuous Fourier transform; this results in an aperiodic function1. On
the other hand, the numerical integration changes this definition to a discrete
Fourier transform, which is necessarily periodic. The period can be shown
to be 2π/δk; this is equal to the observed image distance. Therefore, when
using the wavepacket basis it is always necessary to ensure that δk is small
enough to prevent spurious images from affecting the simulation; fortunately,
since L is known, this is easily done.

1In fact, if we assume
√
k′ is constant throughout the interval, we obtain the Fourier

transform of a box function, which is a sinc(x) wavepacket as expected.

23
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Figure 4.1: Single basis function plotted over a large x range. As the accu-
racy of integration is increased, the images move further away from the real
wavepacket (at x = 0). The distance between images is L = 2π/δk.

4.2 Ground state density calculations

One of the useful features of using the wavepacket basis is the possibility of
recovering the exact local non-interacting many-electron ground state den-
sity simply by summing contributions from a small number of wavepackets.
In the case of a system characterised by a Hamiltonian equal to the refer-
ence Hamiltonian for the basis it is enough to occupy with an electron each
wavepacket localised within the region of interest. Due to their localised
nature, the contributions from all other wavepackets can be neglected.

As an example, we consider the ground state density of a 1D jellium
model of a chain of sodium atoms with a gap. The potential for this system
is a square barrier, such as (2.18). It is therefore possible to construct a
set of SWPs using the same potential. The distance between sodium atoms
in the chain is a = 4.68a0. The Fermi energy is EF = 0.056Ha and the
potential height is V0 = 0.05Ha. The jellium model ground state density can
be calculated exactly using a Green’s function method [20].

Using the SWP basis, any energy bands higher than EF are going to be
completely empty and so need not be considered at all. For energies lower
than EF, we have chosen to divide the energy spectrum into two bands: the
lower band, covering the interval (0, 0.025], and the higher band, covering
[0.025, 0.056]. Each band has right and left-incident wavepackets.

Fig. 4.2 shows how the SWP density converges to the exact density as the
number of basis functions included in the calculation increases. Within each
band, the wavepackets are denoted by the snapshot number m. m = 0 is the
band’s initial wavepacket (equivalent to t = 0); m < 0 denotes backwards
time propagation and m > 0 forwards time propagation. In Fig. 4.2, N
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Figure 4.2: Convergence of the ground state density of a sodium atomic chain
with a gap using SWP basis functions.

denotes the number of snapshots used on either side of the intial wavepacket
(for example, the N = 2 calculation sums contributions for m = 0,±1,±2
for each band). Therefore, the total number of wavepackets plotted for each
calculation is 2(2N + 1). Right and left-incident wavepackets are simply
reflected about x = 0 (due to the symmetry of the potential) and so don’t
need to be plotted separately.

As can be seen from the figure, the density within a few Fermi wave-
lengths rapidly converges as N increases (λF = 18.8a0). A good agreement is
obtained for N > 10 (i.e. using at least 22 wavepackets). It should be noted
that the density calculated for N = 20, although close to the exact density, is
in fact slightly too high; this obviously cannot be corrected by adding more
wavepackets. Instead, the discrepancy is due to the numerical integration,
the accuracy of which needs to be increased to further converge the results.

Fig. 4.3 shows how the various wavepackets in the two energy bands con-
tribute to the total density. Only the right-incident wavepackets are shown;
their contribution is small on the transmitted side of the barrier. Instead, on
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Figure 4.3: Individual wavepacket contributions to the total density for the
two bands. Only the first few right-incident wavepackets are shown.

the transmitted side the density is built up mainly from the identical left-
incident wavepackets (since there is little transmission through the barrier).

For both bands, the initial wavepacket is the major contributor close to
x = 0. The two wavepackets propagated by one time step (m = ±1) are
significantly more dispersed than the initial wavepacket and very similar in
shape to one another; however, m = 1 has a smaller contribution due to a
trasmitted component on the other side of the barrier. In the lower band
these wavepackets are almost entirely contained within the plotted range,
while in the higher band only the tails are visible. This is because the group
velocity of the wavepackets is greater for higher energy bands2. The lower
energy wavepackets also disperse more, since they include components which

2The group velocity for the higher band is ∼ kF and so the distance between wavepacket
peaks is ∼ kFτ1 = 68a0. Instead, for the lower band the group velocity is ∼ kF/2 and the
distance between peaks is ∼ 34a0.
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are almost stationary (for energies approaching zero).
The wavepackets propagated by two time steps (m = ±2) only make up a

small contribution to the total density in this range, due to their propagation
away from the barrier. The contributions from subsequent wavepackets will
be even smaller. Therefore, it is clear why only a small number of wavepackets
is needed to recover the local ground state density.

4.3 Scattering calculations

In the case of a system characterised by a Hamiltonian not equal to the ref-
erence Hamiltonian it is not sufficient to sum the wavepacket contributions
to obtain the ground state density, since these will no longer be made up
of eigenstates of the system (such as the scattering states of a square bar-
rier). However, it is also possible to recover the density by scattering PWPs
or SWPs through the system (provided of course that the potential is lo-
calised and becomes flat outside a central region). This can be understood
by first considering the effect of occupying a single PWP with an electron
and propagating this through a flat potential: the electron will move from
one wavepacket to the next in time τ . Similarly, occupying a number of
neighbouring wavepackets will result in each electron moving by exactly one
wavepacket during each time step. Therefore, we can build up a current
by placing a new electron at regular time intervals in the same wavepacket.
This will eventually span the system, and the resulting electron density will
be equal to the ground state density.

However, if the potential is not flat, the electrons will be scattered once
they reach the barrier. The scattering process will result in the electrons
being in a superposition of several PWPs, equal to a single SWP for that
potential. After time τ , each electron will be in a different superposition,
equivalent to the next SWP. Once an electron leaves the central region the
superposition of PWPs in which it finds itself will stay constant, and simply
shift through the basis functions as before. This means that propagating
electrons through a system using the PWP basis is equivalent to occupying
the SWPs constructed using the scattering potential. To demonstrate this,
we consider the sodium atomic chain model used previously.

The energy spectrum up to EF is divided into two bands (equivalent to the
two used for the SWP calculation). However, it is now necessary to include
higher energy bands, to allow for the scattering process. Four bands of width
∆ε = 0.02Ha above EF were included (covering the interval [0.056, 0.136]);
higher energy bands were neglected. The electrons were placed in the m =
−10 wavepacket in both bands. Fig. 4.4 shows the result of the scattering
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simulation; the ground state density is correctly reproduced, although it is
not as well converged as the density obtained by using an equivalent number
of SWPs. This is to be expected, since the numerical propagation adds a
further approximation to the results. The figure also shows the contribution
to the total density from the two bands. The two main sources of error
can thus be identified. The lower band contribution is accurate close to
the barrier but rapidly divergent moving outwards. This is due to the high
dispersion of the lowest energy wavepackets; therefore, a large number of
them are needed to converge the result. Instead, the higher band contribution
is very close to the exact one throughout the whole range but does not
accurately reproduce oscillation peaks. This is due to the truncation of the
basis set; in fact, since this band is close to EF it requires a greater energy
range to scatter precisely.

Plotting the band contributions against time (Fig. 4.5) is a useful way of
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Figure 4.4: Calculation of the ground state density using scattered PWP
basis functions. In each graph the dotted line shows the PWP calculation
and the solid line shows the exact result.
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Figure 4.5: Right and left-propagating energy band contributions changing
with time in a scattering simulation.

visualising the propagation. The band contribution is calculated by summing
the square of the coefficients of the state vector within each energy band.
Right and left-propagating bands (with α = ±1) are plotted separately. For
the case of a single electron, the picture is simple: the right-propagating
band in which it is originally placed is the only contributor until the electron
approaches the barrier, at which point some of the total contribution passes
to the equivalent left-propagating band (these contributions are similar to
the reflection and transmission coefficients). Higher energy bands can be
seen to have small contributions during the scattering process.

For the case of electrons being injected into the system, the total contribu-
tion is no longer constant; instead, it jumps by one every time a new electron
is introduced. Therefore, the right-propagating band increases in steps until
the first electron reaches the barrier. After this point the steps become dis-
torted as the contribution from the left-propagating band increases. Finally,
a steady state is reached after the first electron reaches the other end of the
system and is removed.

4.4 Non-equilibrium simulations

4.4.1 Establishment of a steady current

The setup for many-electron simulations is discussed in Chapter 3. Unfortu-
nately, due to the large computational cost of such simulations, only a limited
number of energy bands and basis functions were used. Fig. 4.6 shows the
initial electron density from a simulation using three bands: a full band,
covering an energy range immediately below EF = 0.5Ha; a current band, in
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Figure 4.6: Many-electron non-equilibrium simulation of the establishment
of a steady current using a Hartree potential.

which electrons are injected into the system (covering a small energy range
above EF); and an empty band, covering a wide energy range above the cur-
rent band to allow for scattering. As can be seen from the figure, the density
in the buffer regions is fixed at different levels to account for the incoming
current from the left. Once the first electron reaches the right buffer region,
the levels become balanced. Since there is no external potential, the electron
density is equal to the simplified Hartree potential. This is updated every
500 times steps (∼ τ/5). The use of buffer zones is successful; in fact, the
fixed density prevents the electrons from moving out of the real system.

The figure also shows the system after one and two time steps of the
current band, illustrating the propagation of electrons to the right and intro-
duction of new electrons from the left; two and three electrons can be seen
respectively. However, during the simulation unphysical oscillations origi-
nate from the edges of the system; these can be seen to grow rapidly between
time steps. Once the electron current spans the entire range of the simulation
these artefacts prevent the observation of a flat density (as would be expected
for a steady current). Fig 4.7 shows the evolution of the band contributions;
this demonstrates that the simulation reaches a steady state, though not a
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flat density.
These results suggest that a larger system is needed to observe the tran-

sient effects in the establishment of a current passing through an atomic point
contact. However, the obtained results are nonetheless useful for studying
the propagation of an electron front. In fact, with the addition of the Hartree
potential the first electron in the current receives an acceleration from the
one behind it, and therefore moves forward faster than its non-interacting
counterpart.
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Figure 4.7: Energy band contributions changing with time during the estab-
lishment of a steady current. Electrons are added to the right-propagating
current band. As can be seen, the propagation results in the electrons being
in a superposition of wavepackets from all bands. Ideally, the lowest and
highest energy bands should stay almost inert (i.e. completely full and com-
pletely empty respectively); the fact that this is not the case suggests that
more bands need to be added to fully converge the results.
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Figure 4.8: Many-electron simulation of the abrupt switching on of a poten-
tial barrier in a system in equilibrium.

4.4.2 Abrupt switching on of a potential

In this second type of simulation, the system initially has a flat potential and
is in its ground state. For the example shown in Fig. 4.8, four PWP energy
bands were used with the lowest two fully occupied (EF = 0.6Ha). At the
start of the simulation, a small and narrow potential barrier is introduced at
the centre of the system (in this case, V0 = EF/2). The resulting effect is a
rapid oscillation spreading outwards from the barrier.

The figure shows how the system has evolved a short time after the in-
troduction of the potential; the edge oscillations are still small and die away
before reaching the real oscillations around the centre. However, the observed
oscillations are not smooth; enlarging them reveals a second, higher frequency
of oscillation that is being modulated. The wavelength of these faster oscil-
lations is ∼ 2.8a0. As should be expected, this is approximately equal to the
wavelength of Friedel oscillations in a Luttinger liquid (a model of interacting
electrons in a 1D conductor, as is the case here) [23]. Friedel oscillations are
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Figure 4.9: Comparison of the ground state density obtained for a square
barrier using interacting and non-interacting electrons.

observed around impurities (effectively point perturbations) with wavevector
2kF. Therefore, for our system their wavelength is λ = 2π/2kF = 2.89a0.

It is also important to consider the how the ground state density of a
system changes between non-interacting and interacting electrons. Fig. 4.9
shows the steady state observed in a perturbing potential simulation for both
cases; this is equivalent to calculating the ground state with a scattering
method, since the central electrons will move out of the scattering region in
a finite time3. It should be noted that for the interacting case the Hartree
potential was modified respect to the previously discussed simulations. In
order to eliminate the fast oscillations in the density from appearing in the
potential a smoothing factor was introduced; this averages the density over
a small range. In the case of a proper 2D or 3D Hartree potential, a similar
smoothing effect is obtained automatically by the integration.

The figure shows large oscillations appearing in the interacting case that
are absent in the non-interacting case. However, these oscillations are not
static; instead, they propagate outwards continuously. Unfortunately, due to
the small size of the system it is possible that the oscillations are unphysical
and caused by edge effects. Further work is needed to properly converge
these results.

4.4.3 Self-interaction

Finally, we consider the effect of spurious self-interaction on the propagation
of wavepackets caused by the Hartree potential. Due to their highly localised

3This is the the same result proven by Stefanucci and Almbladh in the memory-loss
theorem [24]. The theorem shows that the steady state of a system is independent of the
history of the external perturbation.



CHAPTER 4. RESULTS AND DISCUSSION 34

 0

 0.002

 0.004

 0.006

 0.008

-1000 -500  0  500  1000

D
en

si
ty

 (
1/

a 0
)

x (a0)

t=0
t=τ

t=2τ
t=3τ
t=4τ

(a) Dispersion over 4 time steps

0

54

3

1

2

(b) Evolution over a single time step

Figure 4.10: Effect of self-interaction on a single propagating electron.

nature, we expect this effect to be large. Fig. 4.10 shows the propagation
of a single PWP in the energy band [0.5,0.55]. Since there is only one elec-
tron in the system, the true Hartree potential should be zero. The electron
should therefore propagate exactly between wavepackets in time τ . Further-
more, over the short range plotted there is negligible dispersion between basis
functions. Instead, the figure shows an extremely rapid dispersion, causing
the initial wavepacket’s amplitude to decrease by a factor of a half in about
three time steps. The decrease in amplitude between time steps is greater
for taller and narrower (i.e. more localised) wavepackets as expected. The
figure also shows the motion of the wavepacket between time steps; instead
of a constant and gradual dispersion (similar to the natural dispersion of the
basis functions), the self-interacting wavepacket oscillates up and down with
periodicity τ while propagating.

Another important effect of self-interaction is the unphysical acceleration
received by the electron from its own repulsion. In fact, in our example the
average speed of the wavepacket is ∼ 388a0/τ , three times greater than the
speed of propagation without self-interaction (∼ 129a0/τ).
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Conclusions

The results presented in the previous chapter illustrate the use of the novel
stroboscopic wavepacket basis for the purpose of time-dependent calcula-
tions. In particular, it was shown that only a small number of basis func-
tions are needed to calculate the non-interacting ground state density due to
a localised potential, and that the correct density can be achieved by prop-
agating wavepackets through the scattering region. The use of the basis for
many-electron transport calculations was then demonstrated for the case of
a 1D system coupled to bulk reservoirs of electrons.

The computational advantage of the basis set is also a conceptual advan-
tage; in fact, the wavepacket description of non-equilibrium problems allows
for a clear qualitative picture of the processes involved. This is due to the
localised nature of the wavepackets, and, crucially, the stroboscopic construc-
tion of the basis. This property ensures that an electron in a wavepacket or
a superposition of wavepackets will tend to stay in the same superposition,
simply shifted within the basis set in discrete time steps. The superposition
will only change when the electron encounters a difference between the po-
tential of the system and the reference potential of the basis. In this respect,
although PWPs are more useful for the physical understanding of the time
evolution of the system, SWPs can be used to achieve a further significant
reduction of the number of basis functions needed for an accurate simula-
tion by choosing a reference potential as similar as possible to the system
potential.

5.1 Accuracy and validity of results

As is always the case in computational experiments, the calculations need to
be properly converged to obtain reliable results. In the case of ground state

35
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density calculations (and in general any non-interacting scattering problem)
this is achievable with a relatively small computational cost. This is not only
due to the suitability of the basis set for such calculations but also to the
fact that there are only two significant parameters: the range covered by the
energy bands and the total number of basis functions. Although it is possible
to choose the most convenient division of the energy range, in general using
a smaller number of wide bands to cover the same range will result in a
larger number of wavepackets needed in each band. For the special case of
the reference potential being equal to the system potential this is reduced to
a single parameter, since the energy range only needs to extend to EF.

However, the computational cost significantly increases when consider-
ing interacting many-electron calculations. In particular, the discontinuity
between the simulated scattering region and the bulk reservoirs in which elec-
trons are assumed to propagate analytically causes unphysical oscillations to
appear. In order to sufficiently reduce their amplitude the scattering region
needs to be extended to reduce the discontinuity; of course, such an extension
requires a greater number of basis functions. Further work in this respect is
needed.

Apart from these computational considerations there are also a number
of physical approximations that have not been addressed. Most importantly,
the exclusion principle has not been implemented in the simulations. How-
ever, this can be corrected by extending the Hartree method to a full Hartree-
Fock method with the use of Slater determinants. On the other hand, this
would pose a practical problem when injecting electrons into the system,
since only completely unoccupied wavepackets could be used. Another tacit
assumption is the time-independence of the electron density in the analytic
regions; this is necessary to exploit the properties of the basis set. In prac-
tice, it is a reasonable approximation provided that the reservoirs are broad
compared to the scattering region.

5.2 Future work

The use of the stroboscopic wavepacket basis for quantum transport problems
can be extended in several respects. Firstly, the construction of wavepack-
ets starting from Bloch states instead of plane waves should be considered.
Bloch states provide the eigenstates for a periodic potential system. There-
fore, the analytic reservoirs on either side of the scattering region need not be
restricted to having a flat potential; instead, a more realistic periodic poten-
tial could be employed. This would provide an additional similarity between
the stroboscopic wavepackets and Wannier functions (however, contrary to
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Wannier functions, the wavepackets are only approximately translationally
invariant over short distances due to dispersion).

Furthermore, our time-dependent simulations can be applied to more
complicated systems, such as 2D electron gasses and problems involving spin.
Such simulations require a number of extra degeneracies to be included other
than the direction of propagation of the wavepackets. In all these cases, in-
cluding simple 1D systems, further work is needed to study the effects of
localised negative potentials (or in general any potential supporting bound
states); the propagation of electrons in such potentials is currently not well
described by PWPs or SWPs alone.

Finally, considering the computational aspect of many-electron simula-
tions, it should be noted that the methods used in our investigation are
eminently parallelisable. In fact, the majority of the computational cost
comes from the initial plotting of the basis functions and the recalculation
of the potential matrix elements each time the Hartree potential is updated.
Both tasks are made up of a large number of completely independent ele-
ments; these can easily be run on parallel nodes, with no intercommunication
necessary.
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